‘Paper
2422

a0
June 1985

NASA
Technical

UsemgManual

sertyof U, S. Ar Forca‘f
Pmpe AyEDC {BR.’\R\SWV/

|

!

|
|
|

NASA
Technical
Paper
2422

1985

NANASN

Nationai Aeronautics

| and Space Administration

Scientific and Technical
Information Branch

Real Time Multiprocessor
Programming Language
(RTMPL)

Users Manual

Dale J. Arpasi

Lewis Research Center
Cleveland, Okhio

Contents

Chapter Page

SUIMMATY «tnvvertenrnrnrrereesenraereiaesaesenaeesarerssetensnsessessssnsermnsessessrsnsnsesssstensonaennss 1

J 010 g s 11 161 o) AP T 1

1 Application to Multiprocessor Configurationsccceoeivveviiiiiiiniiieiniine, 3
General Simulator Configurationcoi.viiiiiviiiiienir e ereeeearier e earaenes 3
TALZELITIE «vvevenenien ettt ittt it et et e e aeaestanesseessreteesnssaansenssnanson 4

L Ta3 g1t E:1a o) 1 B € 1113 L PO PP PPN 5
Past-Value COontIOl....coiuieiiinireiiiieiiiiiieenerereeerneraennrssenanrassnrensatenenssserasneens 6

2 RTMPL ENVITOIIMEIL ..uututeterreeetrnrntraeniaeeraeenernenesasenrasesssnrssrssacsassemnssssssossnsses 8
Simulation Development SYSteM....couiriiiirriiiiiiriiieerres et reeeneirrreeas 8
SOUTCE TraANSIALION tuvuninieeiiiiee et eiiten et eeeearneeaanenessarrnsaaenenasnsonrnssssaesnanas 8

IS Y 11 Y o) (B 18 g1 Lot 4 0 o - PPN 10
Syntax Diagram and Basic Constructscvcviiniiiiiiiiiiiiiiiiiiiiininrini e 10
Control Segment and File......c.cooviiiiiiniiiiiii e 11
Program FIlesccoeneriiiiiiiiiiiiiiiis e e 13
Global Data Segment and Filecocoiiiiiiiiii 14

4 DAt SERIMEIILS ..veurenenernenrrrernertteeaseraarsencostostnersnsssirsreierstsesciesestnssassnssssssnns 15
Data Attributes e eeneeaereeeeettaaetetueas e teaatateeaetaneteraeneaatententeeterttanatataas 15

AV 0 o F:1 o) [S PP 16

L @6) 1] £:1 1 - T P PP 17
GlODA] COMSLANLS +uvvvineniineireeenerennerteaerrereeasraraneanrasaasnenaseeasosrasesssmarsssensonses 17

o (T PP 18
Argument SpecifiCationvveverieniiiiiiiininiii e 18
ATEUINENE GIOUPS +vnvurenrinenersitiessestntitestnieatsrairessueessasieesteeneretsrnrerssrasssenss 19

LI =5 Yo 118 10 s JS =14 ¢ £ 1 4| AR s 20
EXECULIVES v vventnvneeesesrenenenanasteeeresasaaeatantasanessnsncenensnanensnmsrensesnssensonsnenens 20

T I PP 21
SUALEITIEIIES .- vuvenenenetneeeareereseneeseseensnasanssneacsnsnseanessanesessesennessemnssssnesnsousnsons 21

P N3 T011 10 111 U P U N SO 22
CONAIIONALS + e eevrieeiieiine ettt ettt aeienanseneananseasanrnsssaneassasasrassemnasssiennssaennoss 22
EXPIESSIONS 1uvvnininnrnseneuneeeresenearrsenentienetiussteneaietaeenaesestensinseneierisresssunness 23
(@/0)110117:1 1 1o ST PPt 26

6 RTMPL SIMULAtION ..ttt etetetiieeeeveeiaanreaeen ettt ttste e ttteteenetsaensrtesresaeassarasnnees 31
) DTT0 41515 L) 1 WA Uy 31
MathematiCal MOl ... ooevniiireiinieieeiirreerstanereenetnsareeanreareensssenesnontanensonsansacns 31

Model Partitioning and AIlOCAtIONocuvirieriiiieiiiiiiiiii e 32
Model Translation to RTMPL......cevuiiiiriiiii vttt 34
Example Source Filesuueuieneniiiiiiimie e 37

7 Usingthe RTMPL ULty ...cueuiirenrerenniieimirieeerie i s e e n e 44
8 RTIMPL LiSHIE v vvueninteieereneecen e irris e s aa ettt e et teetattsea st sbetsesnsetaseeaaeanes 46
SCAM LISHIIE .1t e vvvveneererreseruereeeeraseasaaesens s s reaiast st e iasiesta et et sernsbuaaetaaesossns 46
Documentation LiStiNgceeureeverenrsimmiirieetiriiiiea et e e eere et e raeanansiaaas 47

ifi

10

RTMPL ObjJect Fles....uiunioiiiiiiiii e eae e 50

Assembler SOUTCe FIleso.ouiiiriiiiiiiii e 50

Data-Base Files......ouiiii e ee 53
Concluding ReMATKS - ...vvuiiuiiiii i e e e et et er et eneeseaeaneaaans 54
Appendix A—Listing for Dual-Nozzle Simulation................cccoiiiiinininininneienenennn. 55
Appendix B—Error and Warning Messagesc.ovuiiiiiiiiinienieaeireriieiinsereneneenns 86
Appendix C—Assembler Source Files for Dual-Nozzle Simulationccccceeeeenenenn. 90
| 5 (5 11 R O OSSP PP PP 108

Summary

The NASA Lewis Research Center is developing and
evaluating experimental hardware and software systems
to help meet future needs for real-time, high-fidelity
simulations of dynamic systems. Specifically, the Real-
Time Multiprocessor Simulator (RTMPS) project focuses
on the use of multiple microcomputers to achieve the
required computing speed and accuracy at relatively low
cost. A real-time multiprocessor programming language
(RTMPL) has been developed to provide high-order
language (HOL) programming of RTMPS systems. The
RTMPL programming utility (translator) supports a
variety of multiprocessor configurations and
microcomputer types. The utility serves as an assembly
language programmer. It translates the HOL source
program for each RTMPS computer to a time-efficient
assembler source program and sets up all data
communication between the computers.

This manual describes the RTMPL from a user’s
viewpoint. A programming example is presented to
illustrate the use of the RTMPL utility to program an
RTMPS system consisting of six MC68000-based
computers. The RTMPL source programs and translator
listings are described, as well as the utility output files,
including the assembler source code programs for each
computer in the simulator, and a comprehensive data
base that describes the simulation. The use of the data
base in conjunction with a NASA-developed real-time
multiprocessor operating system (RTMPOS) for
interactive execution of the simulator is discussed. Finally
the unique features of RTMPL are summarized.

Introduction

A real-time multiprocessor simulator (RTMPS) is
being developed at the NASA Lewis Research Center
(ref. 1). It is used to develop and evaluate experimental
hardware and software systems that will allow real-time,
interactive simulation of dynamic systems. The RTMPS
project is focusing on the use of multiple microcomputers
to achieve the required computing speed and accuracy at
low cost (relative to mainframe digital and hybrid
computers). A related goal is to devise a programming
methodology that will permit engineering-level personnel

to easily generate time-efficient code for the simulator
and to conveniently operate the simulator.

A real-time multiprocessor programmers language
(RTMPL) has been developed to provide high-order
language (HOL) programming of RTMPS systems.
The RTMPL programming utility (translator) supports
a variety of multiprocessor configurations and
microprocessors. The utility acts as an assembly language
programmer. It translates the RTMPL source program
for each RTMPS computer to a time-efficient assembler
source program and sets up all data communication
between the computers. The RTMPL utility is written in
Pascal and is designed to run on a host computer under a
disk operating system.

The NASA Lewis implementation of RTMPL runs on
a Motorola EXORmacs! development system under the
VERSAdos! operating system. The user generates
RTMPL source files describing the simulation. The
utility translates these source files into assembly language
program files for the simulator computers. The utility
generates an extensive listing file to aid the user in
debugging the simulation and minimizing its execution
time. The RTMPL language is macro based. Therefore
only the macros have to be rewritten for different
processors (typically done by system programmers). The
current versions of the macros have been written for the
Motorola MC68000 processor. The RTMPL utility also
generates data-base files that describe the simulation to a
real-time multiprocessor operating system (RTMPOS)
(refs. 2 and' 3). The RTMPOS and RTMPL complement
each other, providing a unique environment for
programming and engineering-level, interactive execution
of the simulation.

Reference 4 describes the RTMPL concept, design
philosophy, general features, and relationships to the
simulator hardware and operating system. It also
provides a general orientation and discussion of the
language. The intent of this manual is to familiarize the
RTMPL user with the language constructs and the
functions, capabilities, and limitations of the RTMPL
utility.

This users manual is organized so as to provide a top-
down introduction to RTMPL programming. Since

IMotorola trademark.

the RTMPL was developed to program a general
multiprocessor simulator configuration, that general
configuration and the methods used to target the
RTMPL utility to subsets of that configuration are
described. That description is followed by a discussion of
interprocessor information transfer. The RTMPL
input/output file structure is then presented, and the
function and interrelationships of these files are

described in the context of interactive, real-time
simulation. Each input file is then syntactically defined in
terms of language constructs. Having established the
language definition, a simple simulation example is
developed in detail and used to illustrate the use of the
RTMPL utility, the resultant listings, and the output
files. Methods of using the listings to develop optimized
simulations are also discussed.

Chapter 1: Application to Multiprocessor Configurations

Generally a multiprocessor system consists of a
number of individual computers communicating with
each other. To be solved on a multiprocessor system, a
problem must be segmented. Each segment is assigned to
a separate computer so that the problem may be solved in
parallel, providing answers in less time than possible
with a single computer. Generally this improvement in
performance is gained at the cost of greater programming
complexity since the transmission and reception of data
on the individual computers must be handled by the
programmer. To make the programming of a multi-
processor system attractive to engineering-level users, a
high-order language (HOL) is needed that can automate
these communications. Ideally the HOL will allow the
user to program the system as a whole rather than on a
computer-by-computer basis.

A multiprocessor system can be configured with a wide
variety of communication paths (architecture) and
computer hardware. To avoid obsolescence and to
improve simulation transportability, the HOL must be
conveniently targetable in terms of both simulator
architecture and hardware. That is, the utility that
translates the HOL should do so according to
information describing the specifics of the target
simulator so as to avoid the necessity of generating a new
utility for each simulator. Further the HOL should allow
the user to select the number of computers and
communication paths (within the limits of the target
simulator) to be used to solve a particular problem.
Finally the HOL should automate information transfer
and synchronization within the simulator on the basis of
information contained in the problem statement.

This section describes the multiprocessor configur-
ations that are programmable in RTMPL. It also presents
an overview of the targeting methods used by the
RTMPL utility to generate code for specific
configurations and components. Also included is a
discussion of the information transfer and past-value
retention features of RTMPL, which allow the user to
structure simulations for the shortest execution time.

General Simulator Configuration

RTMPL was developed to program the general multi-
processor simulator configuration shown in figure 1.
Subsets of this configuration are also supported. The
primary elements in the general configuration are the
front-end processor (FEP), a real-time interface, and a
number of simulation channels. Data are transferred
between the simulation channels via the interactive
information bus and the real-time information bus.

The FEP serves as the simulation controller and user
interface. The FEP and its resident disk operating system
provide for simulator run-time operations such as
program loading, simulator mode control, data handling,
and data display. The FEP also services the simulator
peripherals (terminals, disks, printers, etc.). File-
handling services are provided by the disk operating

? Real-time information bus ;
Ay R i
- | fer Channel 1 Channel n
-— inter- PREP LA PREP
face processor processor
— — — -
ti ~— Shared —e b
L] memory L _ |
User
i Channel 1
inter- Channel n
= | face comp LA CoMP
(FEP) processor processor
4t by 4
l] Interactive information bus S
A
Program

and data
files

Figure 1, - General simulator configuration.

system. The FEP is the bus controller for the interactive
information bus. All communications between the FEP
and the simulation channels are via this bus. In the Lewis
RTMPS a real-time multiprocessor operating system
(RTMPOS) (refs. 2 and 3) works in conjunction with the
FEP manufacturer’s disk operating system to perform
the required functions.

The real-time interface serves as the communication
path between the simulator and the real-time world.
Using digital-to-analog and analog-to-digital converters,
it allows the simulation to be coupled to external analog
components such as controllers, actuators, and display
devices. Data to and from the real-time interface are
transferred from and to the simulation channels via the
real-time information bus.

The simulation channels are programmed to execute
the user’s simulation. For noninteractive simulations,-
those that do not require communication to or from the
FEP during execution,-both buses can be used for real-
time, interchannel communications. However, for
interactive simulation, the interactive information bus
might be tied up servicing user requests and might not be
available for real-time data transfer when required.
RTMPL allows the user to assign data communication
paths to meet specific simulation requirements.

Each simulation channel, in the general configuration,
consists of two processors: a computation processor
(COMP) tied directly to the interactive bus, and a
preprocessor (PREP) tied directly to the real-time bus.
These processors communicate through shared memory.
The general configuration allows a simulation program
to be segmented into 1 to 2N parts, where N is the
number of available simulation channels. One of these
channels can be assigned to perform real-time functions
necessary to support the actual real-time simulation. This
channel is designated as the “‘RTX’’ (real-time extension
of the FEP). Depending on the specific implementation
of the general configuration, the RTX may have to
perform functions such as control of the real-time
information bus, sequencing and control of simulation
execution, and support of RTMPOS functions. The user
should be aware that using the RTX functions available
on the target simulator may require significant execution
time overhead. This overhead may result in a limit on the
time available for executing a user’s program on the
RTX. The other simulator channels are designated as
“DSC” (digital simulation computers). The DSC
channels should generally be used for the simulation
computations since they require the least overhead. The
RTX should be limited to performing nonessential
functions (e.g., analytical) since they might have to be
sacrificed to execute the simulation within a prescribed
update interval.

The general configuration in figure 1 indicates the
broad scope of multiprocessor simulators that may be
programmed in RTMPL. Any subset of this general

4

configuration may also be programmed in RTMPL.
Subsets are obtained by eliminating elements from the
general configuration. These subsets therefore include

(1) Single processor

(2) Single channel

(3) Multiprocessor, single bus

(4) Multichannel, single bus

(5) Multiprocessor, dual bus

(6) Multichannel, dual bus

(7) Multiprocessor, shared memory (no data transfer
required)

Note that the general configuration assumes no specific
hardware for any of its elements. RTMPL is hardware
independent.

Targeting

The RTMPL utility contains features that allow the
user to target a simulation to a particular simulator
configuration, type of computational processor, and
simulation purpose. The target configurations are
specified in relation to the general configuration and
include (1) the number of channels and processors to be
used, (2) the location (COMP or PREP) and function
(RTX or DSC) of each processor, and (3) the data
transfer paths to be used. Processor type is specified by
furnishing the utility with information that describes
(1) the hardware characteristics of the processor, (2) the
assembly language code for RTMPL operations,
functions and commands, and (3) the format of the
RTMPL utility’s output (i.e., assembly language
programs) as required for the further development of
executable code for the processor. More than one set of
assembly language code may exist for a processor.
Simulation purpose is specified by selecting the set of
codes that best meets this purpose. For example, to verify
the execution of the simulation, the user might select a set
of operation and function coding that contains calcu-
lation overflow tests. After verification, the user would
reduce the computation time by selecting a set of
operation and function coding without the overflow
tests. The following paragraphs describe the methods to
be used in supplying targeting information to the utility.

Configuration targeting is done within the RTMPL
simulation programs. The utility requires the user to
construct an RTMPL program for every processor to be
used in the simulation. Each program must be assigned a
unique identifier (i.e., RTX, RTXPREP, DSC, or
DSCPREP) that indicates the function and location of
the processor. (The specific formats for these identifiers
are provided in Chapter 9.) These identifiers implicitly
define the configuration of the target simulator to the
utility. Additionally, an RTMPL construct is available
(see the section Variables, Chapter 4) to allow the user to

specify the data path for transferring variables from one
processor to another. This implicit definition of the data
paths in the target simulator requires that the RTMPL
user be familiar with the available hardware and with
these data paths.

The user targets the utility to processor type and
simulation purpose by specifying a set of target definition
files (Control Segment and File, Chapter 3) that govern
the translation function of the utility. The RTMPL utility
translates RTMPL source programs into assembly
language macro statements according to information
contained in this set of files. These files describe the
target processors, the target assembler, and the assembly
language macros to the utility. They are normally
developed by systems programmers during installation of
the RTMPL utility. More than one set may be available
for a particular simulator to allow for optimum code
generation for different applications or simulation
objectives. The use of the target definition files makes for
easy transportation of RTMPL simulations between
simulators containing different processors. It also allows
a single source program to be translated differently for
different purposes. For example, different target
definitions may be used to produce both efficient
noninteractive code and code that permits maximum
interaction of the user with the simulation at run time.
Other information contained in the target definition files
will be covered in the discussion of RTMPL constructs
and utility functions.

Information Transfer

The RTMPL utility translates RTMPL programs into
assembly language programs by breaking them down into
a sequence of macro operations and arguments. The
target assembler then substitutes assembly language code
for each macro in the sequence and assembles this code
into machine language for execution on the target
processors. The utility selects the macro operations from
a standard set on the basis of targeting information and
program requirements. Arguments are specified to meet
program requirements. The assembly language code used
for macro substitution is obtained from the target
definition files. This code is usually formulated by
systems programmers during installation of the RTMPL
utility to provide time-efficient execution of the RTMPL
macro set on the target processors.

The RTMPL user need not be concerned with most
aspects of this translation process. However, knowledge
of how the utility mechanizes information transfer may
be important since the information transfer may
significantly affect the execution time of the simulation.

Three types of information transfer can be mechanized
by the utility: control, analytical, and data. Control
information regulates the computational sequencing of

the simulation computations. Analytical information
conveys simulation results to the user. Data information
is passed between the various processors as required to
compute the simulation. Control and analytical
information transfer requirements are specified explicitly
by the user in the RTMPL source programs (Commands,
Chapter 5). Data information transfer is specified
implicitly (Argument Specification, Chapter 4).

At this point a description of the data transfer

mechanism employed by the RTMPL utility is
appropriate. Figure 2 shows the data paths in a single
channel of the general configuration. One segment of
shared memory is shown and it contains the channel’s
transfer and external variables. A transfer variable is one
whose value is computed in one processor in a channel
and referenced either by the other processor in the
channel or by a processor in another channel. An external
variable is one whose value is used in a processor but is
computed in another processor. Data information
transfer between processors is implemented on the PREP
and the COMP by using the macros shown above and
below the segment of shared memory in figure 2. Their
functions are defined as follows:
STX$ stores value of a transfer variable into
shared memory and sends value to other
channels via bus external to processor in
which value is computed

STVS as above, but sends value via bus local to

processor in which value is computed

TSTXVXS$ tests currency of value of an external
variable sent via bus external to receiving
processor; repeated until value becomes

current

) Real-time information bus
Y

Transfer
map
TSTXVX$ > PREP

STXS STV TSTXVLS
TSTXVA$

b |
Transfer and external variables
{current values)
bt

STVS STX$

Transfer
map
y y

§ Interactive information bus U

{ Shared
memory

TSTXVA$
TSTXVLS
TSTXVXS

y COMP

Figure 2. - Information transfer,

TSTXVLS$ as above, but used for values sent via bus
local to receiving processor
TSTXVAS$ as above, but used for values sent via

shared memory from alternative processor
in channel

The local bus for a PREP is the real-time information
bus. The interactive information bus is local to a COMP.

When the RTMPL utility encounters a reference to the
current value of an external variable in one of the user’s
programs (Argument Specification, Chapter 4), it inserts
either a STX$ or STVS$ macro directly after the macro
sequence used to compute the value in the source
program. It also inserts either a TSTXVXS$, TSTXVLS,
or TSTXVAS macro before the reference in the receiving
program. The exact selection of these macros is made
according to the location of the source and receiving
processors in the general configuration and the data path
specified for the variable by the user (Variables, Chapter
4). For example, if a variable were to be transferred from
a COMP to another channel via the real-time
information bus, STX$ would be inserted after the
variable was computed on the COMP. If it were to be
received by a PREP in the other channel, TSTXVL$
would be used to test currency. If it were to be received
only by a COMP, TSTXVX$ would be used. If it were to
be received only by the PREP in the same channel as the
source processor, TSTXVAS would be used in the PREP.

To accommodate transfers of variables to multiple
destinations, the RTMPL utility generates a transfer map
for each transfer variable. When a variable is selected for
transfer, it is assigned a location in channel-shared
transfer memory. This becomes a global assignment for
all channels used in the simulation. Therefore this is the
destination location (or external variable location) for
that variable in all channels receiving the transferred
value. The transfer map for a variable consists of a list of
channels that reference the variable externally. The
STX$/STVS macros consult this map to implement
transfers from a specified location in the local-shared
transfer memory to identical locations in the memory of
the mapped channels. If a variable is externally
referenced only on the alternate processor in the local
channel, the transfer map for this variable contains no
entries. Similarly in a multiprocessor configuration
communicating only by shared memory the STX$/STV$
macros would not be required to consult the transfer map
at all.

The exact functions of the data information transfer
macros and their use of the transfer maps depend on the
specific configuration of the target simulation. Their
general functions, as described, permit data transfer to be
implemented for any subset of the general configuration.
This is done during generation of the target definition
files. Again, the RTMPL user need not be concerned with

the specifics as to how data are transferred. It is
important, however, that the user realize that the time
required to transmit and receive these data depends on
the data path and specific configuration of the simulator.
Proper structuring of the simulation to minimize these
times may make the difference in realizing real-time
execution.

Past-Value Control

Dynamics are incorporated into simulations by
manipulating the past values of variables. Integration
algorithms, for example, require the retention of one or
more past values of a variable. The RTMPL utility
automates the retention of past values.

Figure 3 illustrates the memory configuration and
macros used to control past values in a single channel of
the general configuration. Local memory is shown on
each processor in the channel. All variables whose values
are calculated on a processor have local memory assigned
to them to store their current value and all required past
values (Variables, Chapter 4). After the macros that
calculate a variable’s current value the RTMPL utility
inserts SVL$ macros, which roll the past values down one
calculation interval. That is,

VALUE (T-1i) — VALUE (T-i—-1)

where T represents the current calculation and i goes
from 1 to the number of past values to be retained. The
oldest past value is discarded. The SLVS$ macro is then
inserted to store the current value in VALUE(T). It is at
this point that the RTMPL utility would insert the data
transfer macros STX$/STVS if external transfer of the
variable’s value were necessary.

The RTMPL utility also automates the retention of a
single past value of an external variable. As indicated in
the section INFORMATION TRANSFER, referencing
the current value of an external variable causes the
TSTXVXS$/TSTXVL$/TSTXVAS macros to be used to
test the currency of the value on the receiving processor.
If only the past value of an external variable is
referenced, these macros are not used since currency is
not a consideration. Certain actions are necessary,
however, to accommodate the retention of the past value.

Two segments of shared memory are shown in figure 3.
One segment is used to receive the current values of
external variables as described in figure 2. The second
segment is identical to the first but is used to retain the
past values of the external variables. The XFERSV$
macro is used to test the currency of values of external
variables that are referenced only in terms of past values
and to transfer these current values into the past-value
segment of shared memory for use in the next calculation
interval. The XFERSVS$ macros are inserted after all

(Real-time information bus (

3\
P PREP
SVL$ SLV$ »| XFERSV$ TSTXVSS
/
\ y
ﬁTransfer and external variables (" Transfer and external variables Shared
(current values) (past values) memory
\ ‘ \
\ \
f \
SVLs SLVS$ »| XFERSV$ TSTXVSS
> COMP
J
(Interactive information bus {

Figure 3, - RTMPS past-value control,

other calculations are completed. On a PREP this macro
operates only on values transferred on the real-time
information bus, and on a COMP it operates only on
values transferred on the interactive information bus.

The TSTXVSS$ macro is inserted into the calculation
sequence prior to any use of the referenced external past
value. Its function is to implement the access of the
external past value to local processor computation.
Unlike the TSTXVX$/TSTXVL$/TSTXVAS$ macros
currency testing is not required before implementing this
access.

Note that the precise functions of the data-transfer and
past-value control macros depend on the target simulator
configuration. The preceding descriptions apply to their
functions in the general multiprocessor configuration.
Although these functions are required in any
configuration, they may be performed in whole or in part
by the target simulator’s hardware. By allowing these
macros to be structured to suit the target hardware,
RTMPL can be applied to the various subsets of the
general configuration.

Chapter 2: RTMPL Environment

The RTMPL utility functions under a disk operating
system (DOS). It was initially implemented under
Motorola’s VERSAdos on an EXORmacs development
system. The utility is specific to a particular DOS only in
the file identification format. In this manual, files are
identified by using the following VERSAdos format:

VOLUME:USERNUMBER.CATALOG.
FILENAME.EXTENSION

where the field widths (i.e., maximum number of
characters) are

(4):(4).(8).(3).(2)

The user should become familiar with the file
identification format required by the DOS used in the
specific installation of RTMPL.

The RTMPL utility processes and produces files of
information. It operates in conjunction with other DOS
utilities to develop user simulations. This section places
the RTMPL utility in context with the overall simulation
effort and familiarizes the user with its major functions.

Simulation Development System

Figure 4 shows the RTMPS software utilities used in
the development and execution of real-time
multiprocessor simulations. The SYSDEF utility is used
to generate target definition files. This is normally done
by qualified systems programmers and need not concern
the general user. Simulation development begins with the
DOS editor, which is used to develop RTMPL source
files. These files define the simulation problem and
contain programs for each simulator processor to be used
in its execution. The RTMPL utility translates the
RTMPL source into assembly language source files
according to information contained in the target
definition files. The target assembler and linker utilities
are used to create load modules for execution on the
target processors. The RTMPL utility also produces

ﬂ_L
SYSDEF > Target
utility definition
P ———— _rT:
System RTMPL
editor — source
=
I E—
RTMPL ASML Data st
utility = | source [P hase | Lsting
J
A I S—
Target Load
assembler - modules
and linker J
RTMPOS . .
utitity g Interactive execution

Figure 4, - RTMPS software utilities,

simulation-descriptive data-base files. The RTMPOS
utility accepts the load modules and loads them into the
simulator at run time. Also at run time RTMPOS reads
the data-base files to establish a simulation data base that
will allow engineering-level interactive execution of the
simulation. In addition to the object files (assembler
source and data base) the RTMPL utility produces an
extensive listing file that provides messages and source
interpretations to aid the user in developing error-free,
time-efficient simulations. The RTMPL source, object,
and listing files are discussed more completely in later
sections of this manual.

Source Translation

The RTMPL utility is, in effect, an assembly language
programmer. From the simulation description supplied in

the source files the utility develops assembly language
programs according to information supplied in the
specified target definition files. Although the translation
process is essentially transparent to the user, the major
functions of the utility in performing this translation are
described here to provide a background for the source
and object file descriptions that follow.

The utility parses each executable source statement into
a list of operations and associated arguments. While
doing this, it tests each statement syntactically for
correctness. (Parsing is the breaking down of complex
statements into an ordered sequence of primative
operations.) It also tests each statement semantically
against source argument definitions. Arguments are
defined in terms of data type and precision. RTMPL
supports the Boolean data type and three arithmetic data
types (integer, scaled fraction, and floating point), as well
as three arithmetic precisions (single, double, and triple).
The required data type of the operation is determined
from the data type of the statement result. As part of the
semantics test the utility compares the required data type
with the data type associated with the arguments of the
operation.

If the statement is found to be syntactically and seman-
tically correct, the operation/argument list is translated
into a list of assembly language macros. The utility
supports three argument sources (register, memory, and
immediate). An arithmetic addition operation, for
example, could be supported by up to 81 addition macros
in the target definition files (considering all possible
combinations of data type, precision, and argument
sources). Having already determined the required data
type, the required precision is determined based on look-
aheads and look-backs at the other operations in the list.
The minimum precision necessary to provide the required
accuracy of the statement result is selected as the desired
precision of the macro. The target definition files are
consulted to see if this precision is supported. If it is not,
the next best macro is determined. The user is advised if
accuracy will be impaired because the proper macro is not

available. The required precision of the arguments is
obtained from the target information once the precision
of the macro has been determined. Precision conversion
macros are inserted automatically by the utility to
provide the proper precision of the arguments.

At this point the macro options have been reduced to
those that support the required operation, data type, and
precision. It now remains for the utility to select the
macro, from this set, that best supports the available
argument sources. The values of the arguments may
reside in memory or in register (if they are the results of
previous calculations). If the argument is a constant, it
may be expedient to use an immediate data source (where
the value exists only within the code of the operation).
Desired sources are determined so as to minimize the
loading and storing of data from and to memory. The
target macro set is consulted to see if the desired sources
are supported. If they are not, the best available source is
selected and appropriate load and store macros are
inserted to conform the arguments to the required
sources. The use of scratch pad memory (temporary
storage) is fully automated by the utility.

When the macro set for the source statement has been
formed, it is edited by the utility (i.e., scaling macros are
inserted) if the scaled-fraction data type has been
specified by the user. Past-value control and data transfer
macros are also inserted as required.

The user is advised of all precision and scale factor
adjustments by means of warnings in the listing file. If
adjustments to constant arguments are necessary, a new
constant with the proper attributes is created by the
utility. Definitions of variables are not modified. Using
the warnings, however, the user may opt to incorporate
the redefinitions in the source programs to eliminate
superfluous adjustment macros and thereby reduce
simulation execution time.

The final steps in the translation process are the
assignment of registers and the generation of assembly
language source files.

Chapter 3: Simulation Structure

RTMPL is a structured, high-order language designed
to facilitate the development of etror-free, time-efficient
simulations. The user constructs an RTMPL simulation
by creating RTMPL source files as shown in figure 5. The
source files define the four segments: control, global
data, local data, and execution of an RTMPL simulation.
There is one control segment and, at most, one global
data segment for each simulation. There is one local data
segment and one execution segment for each processor to
be used in the simulation. The combination of local data
and execution segments for a processor is referred to as a
program.

Separate source files are used to contain the control
and global data segments. A separate source file is needed
for each program. These files are text files, but they must
conform to RTMPL constructs. In the following sections
the format of RTMPL constructs and the structure of the
RTMPL source files are described.

Syntax Diagram and Basic Constructs

RTMPL constructs can be best illustrated by using
syntax diagrams. Syntax diagrams for the basic RTMPL
constructs, shown in figure 6, define these constructs and
show how to use them in writing source code.

In general a syntax diagram contains one or more
programming elements linked together by curved paths
that are terminated with arrowheads to show the
direction of travel. A rectangular element is used to
indicate where a named construct is to be inserted.
Parenthetical remarks are used within some syntax
diagram rectangles for clarification and generally to
denote a special application of the referenced construct.
They do not modify the construct in any way. A circular
or oval element contains a symbol or string of symbols
that must be exactly replicated. The basic construct,
NAME (fig. 6(a)), consists of the LETTER construct
followed by a series of LETTER or DIGIT constructs
(figs. 6(b) and (c), respectively). Note the use of the *...”’
sequence in these figures to show the inclusions of all
symbols from “A’’ to ““Z’’ and from ‘0"’ to “‘9.”

Source file
Control
segment
Source file
Global data
segment
Source file Source file
Local data Local data
segment segment
{program 1) (program n)
o e O
Execution Execution
segment segment
{program 1) (program n)

Figure 5. ~ RTMPL source files.

A basic problem with syntax diagrams is in the
definition of limits. In the NAME construct the
LETTER/DIGIT choice is contained in an infinite loop.
In reality this construct is limited to eight symbols. To get
around this problem, notes are used in the diagrams to
indicate the limitations imposed.

The INTEGER and SIGNED-INTEGER constructs
are shown in figures 6(d) and (e¢). The number of digits
allowed in an integer depends on the Pascal compiler
used to generate the RTMPL utility. Sufficient digits will
generally be available for all applications. There is no
need to burden the user with precise specifications on
these limits since violations will be rare and flagged as
errors by the utility.

The VALUE construct (fig. 6(f)) is used to specify real
numbers in RTMPL. A versatile E-format is used. An
additional syntax diagram element, the hexagon, is
shown in the construct. The hexagon denotes that only
one path may follow from it, depending on the value of a

Name

LETTER

|

LETTER

DIGIT

1Loop limited to seven characters,

(a) Identifiers.

Letter

(b} Letters.

L]

1Loop limit is application dependent.
(d) Unsigned integers,

Digit Signed integer

’ ®
o

(e} Signed integers,
{c) Digits,

Value
SIGNED
INTEGER

INTEGER

(i Real numbers.

Logic
(g) Boolean values.

Comment

O} -0-0

(h} Comments,

Strin
gl LETTER %“ DIGIT F%‘@%—v

(b Character string.

Figure 6, - Basic constructs,

previously specified condition. In this case the condition
“DECPT”’ or ‘“‘not DECPT’*’ (#{DECPT) depends on an
option selected during generation of the control file. It is
used to specify whether a decimal point is required in the

representation of whole numbers (following section).
Some examples of real numbers using the VALUE
construct are

3479., .3479E + 4, 1.7048
or, if #DECPT is set in the control segment,
7048,7048E — 4

Boolean values are defined by the LOGIC construct in
figure 6(g).

RTMPL allows the user to program in a free form.
That is, although the syntax diagrams must be followed
exactly, the user is free to insert spaces and line feeds
anywhere. This feature allows the user to structure source
programs that are personally readable. The semicolon is
used in RTMPL to denote the end of a statement or
entry. To further enhance readability, the user may insert
comments anywhere after a semicolon or at the start of a
source file. Comments are structured by using the
COMMENT and STRING constructs (figs. 6(h) and (i)).
An example of a comment is

*THE*COMPRESSOR*HAS*STALLED"*;

Note that asterisks are used in lieu of spaces in strings.
All statements, entries, and comments are limited to 3200
nonspace characters (i.e., semicolons may not be
separated by more than 3200 nonspace characters).

Control Segment and File

The control segment describes the nature of the
simulation to the RTMPL utility and regulates its actions
in processing the other segments of the simulation.
The file containing this segment has no identification
restrictions (as do other RTMPL source files). It is
referenced as an argument in the DOS command line that
invokes the utility (see Chapter 7). This single-record
segment (file) is generated by using the CONTROL
construct (fig. 7). The file (fig. 7(a)) consists of up to
11 +N entries, where N is the number of simulator
channels to be used for the simulation. Each entry must
be terminated with a semicolon. An example of a control
file for a simulation called T700SIM is shown here.

DECPT,FLOPPY; (entry 1)
T700SIM; (entry 2)
TRANSIENT*TEST*CASE; (entry 3)
FLO*T*BLADE; (entry 4)
FLOP; (entry 5)
FLOP; (entry 6)
FLOP; (entry 7)
1; (entry 8)

4; (entry 9)
RTX.INPRC; (entry 9+1)
DSC.CMPSIM; (entry 9+2)
DSC.BNRSIM; (entry 9+ 3)
DSC.TRBSIM; (entry 9+4)
GLOBAL.INT700; (entry 10+4)
18086. MACHCHAR; (entry 11+4)

The first entry contains user-specified options that
govern the operation of the utility. One or more options
must be specified from the defined set. Multiple options
are separated by commas. These options are defined in
figure 7(b) and summarized in table I for easy reference.
When the utility encounters the NONE option, any
previously specified options are ignored, but any options
following NONE are enforced.

The FLOPPY option results in the utility pausing prior
to accessing an RTMPL source file. The message

(FILE ID) READY? (Y/N)

is displayed and the utility waits for a ““Y’’ response. This
option is useful if all RTMPL sources files cannot be
contained on a single physical volume such as a floppy
disk. Note the use of angular brackets. The convention
will be used in this manual to denote user-supplied or, in
this case, utility-supplied information of the type
specified within the brackets.

The DECPT option requires the utility to insert
warnings in the listing file if a decimal point is not
contained within an engineering unit value. This option
should be used by those wishing to differentiate between
real and integer values or those worried about decimal
point omissions. The DEBUG option will not normally
be selected by the user. It requires the utility to provide
functional information in the listing file to verify the
validity of the utility’s operation. The NOGLF option, if
used, advises the utility that the simulation contains no
global data file. The global data segment is optional in
RTMPL.

Entry 2 contains a user-assigned simulation name. It is
used by the utility whenever reference to the entire
simulation is required. It is used in developing listing
headers, in certain diagnostic messages, and in file
identification for non-program-specific data-base file
assignments. Entries 3 and 4 allow further user
descriptions of the simulation for use in listing headers.
They are limited to 64 and 32 characters, respectively.

Entries 5, 6, and 7 specify logical volume names
(designating the disk or medium containing the files) for
the RTMPL source, object (assembler source), and data-
base files ownership. Entry 8 is the user number for file
identification. The constructs for these entries and
entry 2 are defined not in RTMPL but by the resident
DOS and are installation dependent. The volume names

Control

OPTION NAME
(simulation)

]

2
STRING

STRING
(description) > () ™ (user 1D} '())
3 3
VOLUME VOLUME VOLUME
(source) [() {object) ’ () 1 (data base)

3
User Integer (number
number ’ () ™1 of channels)

-

~

¥

-

.

5
RTX

K NAME
DSC (channel}]

#NOGLF NAME {(global |
OGLF GLOBAL . segment) ——()—j

(NAME (target 7

catalog) ‘ MACHCHAR ()

Leg-character limit,
32-character limit,
3Installation dependent and not defined in RTMPL,
4Magnitude timited to number of target channels available,
One RTX channel allowed per simulation,
Loop limited to number of channels specified.
Used to designate machine characteristics target file.

(@ File structure,
Option

e €D
-G
SNGTTD S
D

(b} Utility operational options,

Figure 7. - Control segment,

and user number are used by the utility in accessing
source files and in generating object files.

Entry 9 defines the number of simulator channels (N)
to be used in the simulation. Entries 10 through 9+N

TABLE I.—UTILITY CONTROL OPTIONS

Option Description Default

DECPT | Causes a listing file warning if a decimal point is not NOT DECPT
encountered in a real number

NOGLF | Advises that the simulation does not have a global NOT NOGLF
segment

SCAN Causes the object files not to be generated and the listing | NOT SCAN
file and special macro files to be generated

FLOPPY | Causes a pause for disk insertion before files are accessed | NOT FLOPPY

DEBUG | Not for general use; causes expanded listing containing NOT DEBUG
RTMPL diagnostic information

NONE Causes all previously specified options to be set to default | ~———-————
value

contain the channel identifiers in terms of type and
logical name. Entry 10+N must be included if the
NOGLF option was not selected. Entry 11+ N specifies
the target simulator characteristics and forms the basis
for the utility’s referencing of all target definition files.

Program Files

A program file contains the local data and execution
segments for each processor to be used in the simulation.
The program file for a VERSAdos installation must be
named as follows:

VOLUME ID must be consistent with that
specified in control file (entry 5)

must be consistent with that
specified in control file (entry 8)

must be “RTX’’ or “DSC”’ to
identify program function. (If
program is for a PREP, “PREP”’
must be appended (e.g.,
DSCPREP).)

must be logical name assigned to a
channel in control file (entries 9
through 8 +N)

““SA,” indicating a text file

USER NUM

CATALOG ID

FILE NAME

EXTENSION

Examples of program file names based on the previous
control file examples are

FLOP:1.RTXPREP.INPRC.SA
FLOP:1.RTX.INPRC.SA

FLOP:1.DSCPREP.CMPSIM.SA
FLOP:1.DSC.CMPSIM.SA

FLOP:1.DSCPREP.BNRSIM.SA
FLOP:1.DSC.BNRSIM.SA

FLOP:1.DSCPREP.TRBSIM.SA
FLOP:1.DSC.TRBSIM.SA

Program

VARIABLE Variable
(o)) ®
CONSTANT Constant
CEDSO ®

L Argument group
Grarow ®
1
YEC Executive
- e ©
©
GO N
TASK : ’
> ° definition

Statement °

E)—0

.
1At least one EXEC record required,

Figure 8, - Program file,

The program file construct is shown in figure 8. Each
program file is made up of records. There are five types
of record, denoted by the record identifiers VARIABLE,
CONSTANT, ARGGROUP, EXEC, and TASK. The
identifier is separated from the record content by the
colon character. Records are terminated by the end-of-
record statement ‘‘EOR;’’. Record types may appear
more than once in a file and their order in the file is up to
the user. All statements and definitions within the records
must be terminated with a semicolon.

13

The EXEC and TASK records define the execution
segment of a processor program. VARIABLE,
CONSTANT, and ARGGROUP records define the local
data segments for the EXEC and TASK records.
Constructs for these records are described in the sections
of this manual that discuss the segments. At least one
EXEC record is required in each program. The other
records are used as necessary to describe the program
function. Program files containing the various record
types will be shown in detail for the example problem.

Global Data Segment and File

The global data file contains data that may be
referenced as execution segment arguments in any or all
of the program files. The file for a VERSAdos
installation must be named as follows:

VOLUME ID must be consistent with that
specified in control file (entry 5)

USER NUM must be consistent with that
specified in control file (entry 8)

CATALOG ID must be “GLOBAL”’

FILE NAME user selected

EXTENSION “SA,” indicating a text file

An example of a name for the global data file
corresponding to the control file example is

FLOP:1.GLOBAL.INT700.SA
The construct to be followed in generating the global data

file is shown in figure 9(a). The file consists of records.
There are two different record types, denoted by the

Global data
m ° Constant
definition
7-»._.._(“/\55 SAGE Message
- ° definition o
g j

(a) Global file format,

Message definition

NAME STRING
{message 1D} {message)

(b} Messages.
Figure 9, - Global data file,

identifiers MESSAGE and GLCNST. The record
identifier is separated from the record content by the
colon character. Records are terminated by the end-of-
record statment ‘““EOR;”’. These records are used as
required to define the global data segment. Remember, if
no data segment is required, the NOGLF option must be
selected in the control segment. Records may appear
more than once in a file, and their order in the file is up to
the user. All definitions within records must be
terminated with a semicolon. Constructs for these
records and their functions are described in the following
section.

Chapter 4: Data Segments

The local and global data segments are used to define
simulation variables, constants, argument groups, and
run-time messages. These definitions are used to verify
semantics and to build assembly language macros when
these items are referenced as arguments in the execution
segments. Variables are defined as those items that are
subject to change as a result of executing the simulation.
Constants are those items that do not change as a result
of simulation execution. Argument groups are lists of
variables and constants. They can be used by RTMPOS
for run-time data gathering and display. They may also
be used within the simulation to pass arguments and data
between the user’s programs and target library
procedures. Messages are displayed to the user during
simulation execution when user-programmed conditions
are met.

This section describes the constructs used to define
data items. The data attributes are discussed, as are
special properties that are useful for simulation.

Data Attributes

Alllocal and global data are assigned names to identify
the data item (fig. 6(a)). All names within a local data
segment must be unique within the segment. All names of
constants within the global data segment must not only
be unique within the global data segment but also
different from any name assigned in any local data
segment in the simulation.

Along with names, RTMPL requires certain other
attributes to be specified. The VALUE construct (fig.
6(f)) is used to specify data values. Other attributes are
size (SIZE), data type and precision (DTP), and scale
factor (SF). Constructs for the specification of these
attributes are given in figure 10. SIZE (fig. 10(a)) is used
to define the number of elements associated with a data
name. Its meaning is data-construct dependent and is
described in the discussion of these constructs. DTP (fig.
10(b)) is used to specify the data type and precision of
constants, variables, and argument groups. RTMPL
allows assignments of four data types:

Size

INTEGER

(a} Size.

DTP

_

\j

(b) Data type and precision,

SF
{ SIGNED

INTEGER

T

(c) Scale factors,

Figure 10, - Special data attributes,

(1) Integer (I): integers

(2) Scaled fraction (S): real numbers
(3) Floating point (F): real numbers
(4) Boolean (B): logical (true or false)

The arithemetic data types—I, S, and F—must be
assigned a precision. RTMPL supports single-, double-,
and triple-precision data of these types (1, 2, and 3). The
selected precision dictates the number of bytes used in the
target processor to represent the data and is directly
proportional to accuracy and generally inversely
proportional to computational speed. Usually single-
precision integer data provide two bytes of accuracy, with
another two bytes of accuracy added for each increase in
precision. The exact implementation of precision by the
target processor is specified in the target definition files.

15

The choice of data type assigned to integer or logical
variables and constants is obvious. However, in assigning
real variables and constants, the user must decide
between the S and F data types. This choice is dictated
primarily by the computational speed requirements of the
simulation and the computational speed capability of the
target processor in performing operations on the data
types. Generally scaled-fraction computations are faster
but are slightly more difficult to generate since they
require scaling of all variables and constants. Since
scaled-fraction values must fall between — 1 and +1, the
maximum absolute value of each variable or constant
must be determined and specified in its RTMPL
definition. RTMPL uses binary scaling. The maximum
absolute value must therefore be specified in terms of the
minimum power of 2 that exceeds the maximum absolute
value. The specification is made by using the construct in
figure 10(c). For example, if the maximum absolute value
is 31.9, SF becomes 5 (25=32); if the value is 0.1239, SF
becomes —3 (2-3=0.125).

While processing equations involving scaled fractions,
the RTMPL utility will perform all necessary scale factor
manipulations, thereby relieving the user of this chore.
The user-assigned scale factor (SF) is referred to as the
‘“nominal’’ scale factor of a variable or constant. When a
operation is performed on the variable or constant, a
“‘required’’ scale factor is then determined by the utility
on the basis of subsequent operations (required to
compute the equation) and information concerning the
operations obtained from the target definition files. The
difference between the ‘‘nominal’’ and ‘‘required”’ scale
factors is reconciled by inserting a scaling macro (shift
operation) before or after the operation as appropriate.
The result of the operation is assigned the ‘‘nominal”’
scale factor for use when the result is an argument of a
subsequent operation. The utility will list recommended
adjustments in SF or precision specifications that will
minimize the computation time (see Chapter 8). Through
these and other advisories the user can adjust the variable
and constant definitions to eliminate time-consuming
scale factor adjustments and potential overflow or
underflow problems.

Variables

Variables are defined by using the construct in figure
11. Each variable is assigned a name and set of attributes.
DTP and SF were described previously. The SIZE
attribute, in this case, determines how many current and
past values of a variable are to be kept. For example, if
the simulation requires the current and last value of a
variable (e.g., if a second-order integration scheme is
used), its size would be specified as 2. The minimum
variable size is 1 (i.e., only the current value is saved to
provide one past value). The RTMPL utility provides for

16

Variable definition

1

2
(Default DTP to last entry)

SIZE

{past values) ’
(Default SIZE to 1)

(Default HOLD to O) {Default IC to 0)

(Default all values to 0)

. L

This path taken if variable defined as scaled fraction,
This path taken if variable not defined as scaled fraction,

e
Figure 11, - Variable definition,

automatically adjusting the variable’s past-value array
after its solution in an equivalence statement. All
variables must appear on the left of an equivalence
statement.

Two values must be assigned to each variable in the
variable definition. The hold value is reserved for special
operating system (RTMPOS) applications. The initial-
condition (IC) value is the starting value of the variable
when the program is loaded and whenever the RTMPOS
IC mode command is executed (ref. 4). Both are specified
in engineering units even if the variable is designated as a
scaled fraction.

Note the various default paths through the
VARIABLE DEFINITION construct. All or any
attributes of a variable may be defaulted (as long as the
required default values exist). DTP and SF may be
defaulted to those attributes of the last defined variable.

Consider the following examples of variable
definitions based on the figure 11 construct:

(1) Variable SPEED is to have the value 5000 rpm in
hold and IC. It is a single-precision, scaled-fraction
variable and is to be transferred on the interactive bus.
Since scale factors 212=4096 and 213 =8196, speed would
be defined as

.SPEED =S81/13, 1 [5000./5000.];
or, using defaults,
.SPEED = S1/13 [5000./5000];

(2) Variable SPEEDOT is to have the value 0.0 in hold
and IC. It is a single-precision, scaled-fraction variable
and is to be transferred on the real-time bus. Two past
values are required for the numerical integration scheme.
Therefore SPEEDOT would be defined as

SPEEDOT =S1/10, 2 [0.0/0.0];
or, using defaults,
SPEEDOT =S1/10, 2;

(3) Variable READOT is to have the same attributes as
SPEEDOT. Therefore all defaults are used to define
READOT after the definition of SPEEDOT.

SPEEDOT =S1/10, 3; READOT;

Two types of processor memory are reserved for the
variable values—local memory and transfer memory
(fig. 3). Variable values can only be transferred to other
programs if they are stored in transfer memory. The
RTMPL utility will automatically assign transfer memory
if a variable is referenced in another program. Otherwise
the variable is assigned to local memory. The user
specifies the transfer path for a variable by inserting or
omitting a period before the name specification.
Omission causes real-time bus transfer; insertion forces
interactive bus transfer.

Certain variables are implicitly defined for every
program by the target definition files. Called target
Boolean variables, their values are generated by the
processor’s hardware and firmware. They are always
local and may not be referenced directly in another
program. They are always Boolean (i.e., DTP =B).
Examples of target Boolean variables are OVERFLOW,
POSITIVE, ZERO, and NEGATIVE, which may be
generated by the processor in its status register. Since
these variables are processor dependent, the user must
refer to the system description of the target definition file
to see what variables are available.

Constants

Constants are defined by using the construct in figure
12. As with variables, constants have DPT, SF, and SIZE
attributes. SIZE for constants specifies the number of
elements in a multivalued constant array. The minimum
constant array size is 1. The construct definition allows a
string of N identical values to be extended as N @ value.
Therefore three sequential values of 1.25 could be entered
as 3 @ 1.25. The number of values entered must
correspond to the specified size. No value defaults exist.

RTMPL allows the use of four types of constant:

(1) Local constants
(2) Local parameters
(3) Global constants
(4) Global parameters

Parameters are constants that are adjustable through
RTMPOS at run time. They are specified during the

Constant definition

NAME 2
(constant D}

3
(Default DTP to last entry)

SIZE ;
{array)
(Default SIZE to 1)
L‘@ ‘L - VALUE
INTEGER
{number of values)

TR
-/

lgoolean ('8 data type not alfowed.
This path taken if constant defined as scated fraction.
This path taken if constant not defined as scaled fraction,

Figure 12. - Constant definition (local or global.

constant definition by preceding the constant name with
a period. Local constants and parameters are those
defined within the program file. Global constants and
parameters are those defined within the global definition
file, and their use is described in the discussion of that
file.

RTMPL does not allow user definition of Boolean
constants. The Boolean constants TRUE and FALSE are
predefined by the utility and available implicitly to the
user.

Global Constants

The GLCNST records in the global data file are used to
specify constants and parameters that are global to the
simulation. The record content is specified by using the
construct of figure 12. Global constants may be
referenced as arguments in any program, without being
defined in that program. Upon being referenced, the
global constant definition is copied into the program.
Apart from the advantage that global constant records
relieve the user of the task of defining the same constant
in a multitude of programs, the global constant has a
special meaning to the operating system. If a global
constant is defined as a parameter, modifying its value at
run time, by using RTMPOS, will cause it to change
globally throughout the simulation.

Some examples of constants (both local and global) are

(1) .P1=3.1416 (scaled to 4; single precision;
parameter; single value)
.PI1=S1/2, 1 [3.1416];
or
.PI1=S1/2 [3.1416]; (using the SIZE default)

(2) K1 =1 (integer; double precision; not parameter;
single value)
K1=12[1];

(3) PRXVALS=1.25,1.25,1.25,4.0,5.0 (floating point;
single precision; not parameter; five values)
PRXVALS=FI1, 5 [3@1.25, 4.0, 5.];

Messages

Messages can be relayed to the user at run time via the
ADVISE command. These messages are defined in the
global data file. Figure 9(b) defines the MESSAGE
DEFINITION construct. A message is assigned a name,
which is used to reference the message in an advisory. A
message containing up to 64 characters will be displayed
on the user’s terminal upon execution of the advisory. A
message is global and may be referenced in any program.
Note that spaces are ignored in the message format, but
asterisks are interpreted as spaces.

Argument Specification

To understand argument groups, it will help to
understand how arguments are defined. When a variable
or constant is referenced in a statement as an operand or
in an argument group, it is called an argument. RTMPL
allows any variable or constant, defined within the scope
of the simulation (including global constants), to be
referenced as an argument. The ARGUMENT construct
is defined in figure 13.

Argument

NAME (source
channel 1D}

(Default to local channel ID)

(Default to local processor typel
"t:ﬁ OE~(©)
PREP e

INTEGER (past-
value number)

{Default to first past value)

NAME (program
variable ID)

NAME tprogram
constant 1D)

(Default to first item)

L INTEGER
{element number)

NAME {global
constant 1D)
\ NAME (target .
Boolean variable 1D} D ——

Figure 13, - Argument specifications.

18

Global constants are referenced only by name.
Program-defined constants and variables can have their
source program file explicitly specified. This is done by
specifying the source channel name and processor type.
Thus

TURBINE.C.FLOW
vpecifies the variable FLOW defined in the COMP

program in channel TURBINE. Examples of other
source specifications are

FLOW source of variable FLOW is local
program file
.P.FLOW source of variable FLOW is PREP

program in logical channel
assigned to local program

TURBINE.FLOW source of variable FLOW is
program for local processor type
assigned to logical channel
TURBINE

If a constant is specified as an external argument (defined
in another program) in the local program and has not
been defined in the local program, the RTMPL utility
will create a local constant with the name and attributes
of the argument specification. This constant will be used
as the argument. However, if a constant of the same
name has been defined locally, a program error will
result. This mechanism can be used to identify identical
constants in different programs that should be handled
via global constants.

If a variable not defined in the local program (but
defined in another program) is specified as an argument,
the utility will create an external variable in the local
program and assign it a location in external memory. Its
value will be transferred to the local program after it has
been computed in the external program. The external
variable will then be used as the argument (Information
Transfer, Chapter 1).

The ARGUMENT construct provides a means for
specifying a particular past value of a variable or a
particular element within a multivalued constant array.
This is done by appending $n to the name, where n is the
variable past-value number or constant-element number.
For example,

FLOW $2 (second past value of flow)
TABLE $10 (tenth element in constant array TABLE)

Note that the term ‘‘past value’ refers to the results of
computations. When a variable is recomputed, the old

value is assigned as the first past value of the variable.
The RTMPL utility will issue a warning if a local variable
is referenced as an argument before it has been assigned a
value through computation.

Argument Groups

An argument group is a set of arguments grouped
together under a single name. It can be used to pass
arguments to or from target library procedures (see the
CALL command). Argument groups also provide for
large-volume data transfers between the FEP and the
simulator channels. Argument groups are specified in a
program file by using the ARGGROUP construct defined
in figure 14.

ARGGROUP attributes consist of a data type and
precision (DTP) assigned to the group, the maximum
number of arguments to be contained in the group
(SIZE), and an optional initial set of arguments.
Argument groups can be edited at run time by using
RTMPOS. Therefore arguments need not be specified in
the program. However, since only variables and

ARGGROUP

NAME
DTP
{argument group ID) ()

INTEGER
(SIZE)

(Default SIZE to 1}

ARGUMENT

(Default all arguments)

Figure 14, - Argument group definition,

constants that are available on the argument group’s
processor can be inserted at run time into the argument
group, the user should include, in the ARGGROUP
specification, any external variables and constants that
may eventually be required in the ARGGROUP. This will
allow the RTMPL utility to form these constants and
external variables.

All arguments within an argument group must con-
form to the specified DTP for that group. For examples
of argument groups and their uses, see Chapter 6.

Chapter S: Execution Segment

The execution segment of a program (fig. 15) is made
up of two types of records—executives and tasks.
Executives are used to provide program control and to
perform major simulation functions. Tasks are used to
perform services for executives. Two types of executives
may be specified by the user: background and foreground
(see the section Executives, Chapter 5). Executive and
task records are made up of statements that define the
required simulation execution.

This chapter discusses the definition and use of
executives and tasks. The user should refer to figure 15 in
these discussions. The variations of the STATEMENT
construct and the use of the EXPRESSION construct are
explained.

Background executives

Executive definition

NAME
{executive ID)

_><:) INTEGER (:)
(priority level)

Figure 16. - Executive record specification.

Executives

An executive is defined by using the construct in figure
16. It is assigned a name and a priority level. The first
seven characters of the name must be unique within the
set of program executive and task names. The priority
level is an integer, limited in magnitude to 8, that

. ACTIVATE<ID>
Foreground executives

SELECT (RTMPOS)
> EXEC: <ID>(0];

| Exec: <>,

EXEC: <ID>[0r;
< STATEMENT > .

EOR;

alternate
processor
EXEC: <ID>(8];
EXEC: <10>(2; |
EXEC: <ID>[1];
.. < STATEMENT >
EOR,

ENABLE/DISABLE< task ID >

ENTER< task 1D >

DISPATCH <fask ID>. . . .

ENABLE/DISABLE (RTMPOS)
——

TASK: <ID>;

l TASK: <ID>;

TASK: <ID>;

EOR;

< STATEMENT >

Figure 15. - RTMPL source records - execution segment,

20

specifies the computational priority of the executive
within the program. Lower priority executives may be
interrupted for execution of higher priority executives.
Priority assignments greater than zero must be unique
within the program.

The RTMPL utility modifies the user-specified name,
to ensure its uniqueness. (Future versions of the utility
will eliminate this annoyance.) A special assembler
character (‘‘.”’) is inserted following the name, if the
name is seven characters or less. If an eight-character
name is specified, the last character is replaced with the
special assembler character (e.g., ‘“TURBINES”’ would
become °‘‘TURBINE.’’). (Two special assembler
characters are defined in the target definition files. These
are used whenever the utility must generate a name. In
this manual the period and dollar sign are used.)

Executive execution is governed by two processor
firmware programs: the sequencer and the channel
interrupter (ref. 1). The sequencer is controlled by the
FEP with information provided by the user at run time
through RTMPOS. The channel interrupter firmware
services user-programmed interrupts between COMP and
PREP processors in the same channel.

The user may specify background executives at run
time that will control the execution of the simulation
programs through the sequencer. RTMPL requires at
least one background executive in each program, but
more than one is permitted. By using multiple back-
ground executives the user may change the simulation
subtly or completely at run time (i.e., more than one
simulation may be programmed within a single set of
RTMPL source files). All background executives must
have priority levels of zero.

Executives that are assigned priority levels greater than
zero are considered to be foreground executives. Their
execution is governed by the local processor’s channel
interrupter firmware. This firmware functions during
program execution and allows user-programmed
interrupts between COMP and PREP processors in the
same channel. Obviously foreground executives may only
be implemented on simulators having both COMP and
PREP programs in a channel.

Typically the function of a foreground executive in a
particular program will be to service exceptions occurring
in the alternate processor in the channel. These
exceptions would be generated in the alternate processor
by using the ACTIVATE command (see the section
Commands) and would be the result of conditional
testing in that processor’s program. This eliminates
duplication of code and data transfer when both
processors must respond to the same event. Any number
of foreground executives may be activated
simultaneously, with the order of execution controlled by

the channel interrupter according to predefined priority
levels. Upon completion of all activated foreground
executives, program control returns to the background
executive. If a foreground executive is reactivated while it
is still active, the second activation request is ignored.

Tasks

Tasks are defined by using the construct in figure 17.
The construct consists merely of identifying the task by
name. The first seven characters of the name must be
unique within the set of executive and task names used in
the program. As with the executive definition the task
name is modified by using the special assembler character

Tasks consist of statements structured to do a
particular job within a program. They are reenterable
and therefore may be initiated in any background or
foreground executive (see ENTER and DISPATCH
commands). A task can never be initiated by another
task.

To enhance their flexibility, tasks may be enabled or
disabled at run time by the user through RTMPOS. They
may also be enabled or disabled by any executive or task
in the program (see ENABLE and DISABLE com-
mands). A task may disable itself. If a task is disabled, it
cannot be initiated.

Statements

As shown in figure 15 the functions of executives and
tasks are defined in terms of statements. The
STATEMENT construct is shown in figure 18. The
executive and task statements are processed by the
RTMPL utility to formulate the executable part of
programs. Three types of statement are defined in
RTMPL—assignment, conditional, and command.
Assignment statements are used to establish values for
local variables (those defined in the program containing
the statement). Conditional statements are used to test
values and to take specified actions depending on the
result of the test. Command statements are used to
provide simulation control, sequencing, and linkage to

Task definition

[NAME

(task ID)

Figure 17, - Task record specification.

21

Statement

\ () NAME
(label)

N>l ASSIGNMENT |———»

N> CONDITIONAL |——»

COMMAND

Figure 18, - Statements,

simulator hardware and software components. These
statement types are described in detail in the sections
Assignments, Conditionals, and Commands.

Statements may be labeled by the user. Labels are
names and are enclosed by the underscore character “*_"’.
If a statement is not labeled by the user, the utility will
supply a label based on the order of the statement in the
program. The special assembler character ‘‘$”’ is used to
generate this label. For example, the first statement in the
program would be labeled by the utility as S$1 if it were
not assigned a label by the user. User-assigned labels
must be unique names within the program.

Statements are limited to 3200 characters, excluding
spaces, returns, and line feeds. These three characters are
ignored by the utility, providing flexibility for the user in
formatting the source program. The number and
complexity of statements are essentially unlimited by the
utility. However, they are limited by the amount of user
memory available in the host computer and the amount
of program memory available in the target computer.

Assignments

The ASSIGNMENT construct is defined in figure 19.
The *“="" character is used to denote the assignment of
the computed value of an expression to a local variable.
Although many languages (e.g., Pascal and Ada) denote
assignments by the ‘“:="" combination (to differentiate
an assignment from an equality), RTMPL depends on the
user to properly apply the ‘="’ character. All local
variables should appear as the result of assignment. The

Assignment

NAME {local
variable ID)

—()| eression —

Figure 19, - Value assignment statements,

22

utility will flag those that do not (Data-Base Files,
Chapter 9). Data type (I, S, F, or B) must be maintained
within an assignment (see the section Expressions). The
expression must result in a value whose data type is the
same as that of the local variable.

Conditionals

The CONDITIONAL construct is defined in figure 20.
A conditional statement consists of the key word “IF”’
followed by an underscore character (all RTMPL key
words are terminated by an underscore character in
source programs), a Boolean expression (true or false
value), the key word “THEN’’ (and its underscore
character), a series of statements to be executed if the
expression’s value is true, and optionally, the key word
“ELSE” (and its underscore character) and a series of
statements to be executed if the expression’s value is
false. Note that a Boolean expression may be formed
from arithmetic expressions (data type I, S, or F) through
conjunction with conditional operators (<, #<, =, #=,
>, #>). The conditional operators are defined in
table I1. For example, for integer expressions A, B, and
C, the Boolean expression

A<B=C

will be true if the value of A is arithmetically less than B
and the value of B is equal to the value of C; otherwise
the Boolean expression will be false. The Boolean

Conditional

EXPRESSION
(Boolean)

EXPRESSION
{arithmetic)

ChleLTel -

(arithmetic)
OHEOGO®
EXPRESSION
arithmetio [)
_ _/

STATEMENT

Figure 20. - Conditional statements,

TABLE 1I.—CONDITIONAL

OPERATORS
Conditional RTMPL
operator? interpretation
< Less than
#< Not less than
= Equal to
#= Not equal to
> Greater than
#> Not greater than
AThe ‘4’ character in RTMPL is

interpreted as a logical NOT.

expression, including the “IF’’ key word, has the same
length limit as a statement.

The CONDITIONAL construct is terminated with an
exclamation point. The conditional statement

IF_A THEN_ B=C;

is incomplete. The RTMPL utility will expect additional
statements in the “‘then clause’’ (to be executed if A is
true) or an ‘‘else clause’ (to be executed if A is false).
The following statement is a complete conditional:

IF_ A THEN_B=C;!

In this case no action is taken if A is false since the ‘‘else
clause’’ is omitted.

RTMPL permits nested conditionals. The use of the
conditional terminator “‘!”’ allows the user to build
EXEC and TASK records that have structures similar to
the familiar Pascal ‘‘begin...end”’ structure. The
structure consists of conditional levels. For example,

IF_A (main stream)
THEN_... (level 1)
IF_B

THEN_... (level 2)
IF_C
THEN_... (level 3)
ELSE_...

!
!
!

(level 3 terminator)
(level 2 terminator)
(level 1 terminator)

Three nested conditional levels are shown. The various
levels are indented for clarity. The level 1 test will be
made if A is true. The level 2 test will be made if B is true.
Since the “‘else clause’’ occurs before the termination of
level 3, it will be assigned to level 3 and executed if A and
B are true and if C is false. If the example were rewritten
as

IF_A (main stream)
THENL_... (level 1)
IF_B
THEN_... (level 2)
IF_C
THEN_... (level 3)
! (level 3 terminator)
ELSE_... (level 2)

! (level 2 terminator)
! (level 1 terminator)

the “‘else clause’’ would be executed if A were true and B
were false. Remember that the RTMPL format is free.
The preceding example could have been written

IF_A THEN_... IF_B THEN_... IF_C THEN_...!
ELSE_...!!

However, the structure is not evident in this form. The
RTMPL utility provides a structured listing to aid in
program debugging (see Chapter 8).

Expressions

An RTMPL expression is an ordered string of
operation/operand pairs that is logically formulated by
the user to produce a value. Two types of EXPRESSION
constructs are available: the arithmetic expression (fig.
21(a)) and the Boolean expression (fig. 21(b)). They
differ in the type of value they produce and in the set of
operations available. A Boolean expression can contain
only Boolean operands (DTP=B). An arithmetic
expression can contain only arithmetic operands of the

Expression
OPERAND -
{arithmetic)
OPERAND
(arithmetic)
(a) Arithmetic expression,
Expression

ol

(Bootean)

L , OPERAND

<
OIDIOIZ

OPERAND
(Boolean)

{b) Boolean expression,

Figure 21. - Expression specification,

23

same data type (integer (I), scaled fraction (S), and
floating point (F)).

The data type of the value produced by the expression
must be consistent with the data type requirement of the
statement containing the expression. The required data
type of an assignment statement is always the data type of
the local variable receiving the assignment. The required
data type of a conditional statement is always Boolean.
Arithmetic expressions that are compared, by using
conditional operators, must have consistent data types
across those operators. For example, an integer value
cannot be compared with a scaled-fraction value.

The available RTMPL arithmetic and Boolean
operators are given in table III. Both sets contain unary
and binary operators. Unary operators have a single
operand and must appear only at the beginning of an
expression. The “‘null’”> unary operator is contained in
each set to indicate that a unary operator is not necessary
unless a ‘‘negate’’ or ‘‘logical not’’ operation is required.
Binary operators have two operands and must always be
preceded and followed by an expression.

Each operation is assigned the corresponding parsing
value listed in table III. These values are used by the
RTMPL utility to establish the order of calculation in the
expression. Generally an expression is parsed from right
to left. An operator (and associated operands) is placed
in the sequence when a subsequent operator has a parsing
value not greater than its own. For example, the
expression

(-A*B/C+D-E)

would be parsed as

TABLE III.—RTMPL OPERATORS

(a) Arithmetic expression

Operator | Type Interpretation | Parsing
value
- Unary | Negate 0
+ Unary | No operation 0
Null Unary | No operation 0
+ Binary | Add 1
- Subtract 2
/ l Divide 3
* Multiply 4
(b) Boolean expression
Unary | Logical NOT 0
Null Unary | No operation 0
$ Binary | Logical AND 1
#%$ Logical NAND
Yy Logical OR l
#% Logical NOR

24

SAVE=D-E
RESULT=-A
RESULT=RESULT *B
RESULT =RESULT/C
RESULT =RESULT +SAVE

This parsing rule should be followed by the user in
writing an expression.

Operands for arithmetic and Boolean expressions are
defined in figure 22. Four operand types are common to
both:

(1) Argument

(2) Multivariable function
(3) Unary function

(4) Parenthetical expression

Boolean expression operands include the implicitly
defined Boolean constants TRUE and FALSE and target
Boolean variable names.

The basic operand type is the ARGUMENT construct
(fig. 13). This allows any constant or variable defined in
the simulation to be specified as an operand as long as its
data type is consistent with the required data type of the

Operand
-
} ARGUMENT -
(arithmetic) -
NAME (multi- T EXPRESSION 3
variable function) (qualified)
NAME
(unary function)
L ©_> EXPRESSION
o (arithmetic) ’ () >

a} Arithmetic expression,

Operand

N ! ARGUMENT -
{Boolean)
\ NAME (multi- T EXPRESSION 1
variable function) (qualified)
\ NAME
(unary function)
A 1 EXPRESSION)
- {Bootean)
TRUE ———
N—(FALSE) —
_ NAME (target
"1 state variable)

(b) Boolean expression,

Figure 22, - Operand specification,

expression. Specifying an external variable as an operand
will cause that variable’s value to be transferred to the
local program during execution; specification of an
external constant as an operand will cause that constant
to be defined in the local program file.

An operand may be a parenthetical expression (i.e., an
expression enclosed within parentheses). This definition
does not preclude nested parentheses. For example, the
complex expression

(-((A/(B+C)+D)*E))

contains the following parenthetical expressions as
operands:

Operand 1: (B+C)
Operand 2: (A/OPERAND 1+D)
Operand 3: (OPERAND 2*E)

Since each parenthetical expression produces a value, the
use of parenthetical expressions as operands dictates
the parsing sequence of the complex expression.
Parenthetical expressions are always parsed from the
inside out.

RTMPL supports two types of functional operands:
(1) unary functions, which are functions of a single
variable (e.g., SINE (ANGLE)) and (2) multivariable
functions, which may have eight variables (e.g.,
INTEGRAL (RESULT, GAIN, DERIVATIVE)).
RTMPL does not contain any inherent functions of
either type. That is, the specific functions available to the
user are those that have been established during the
RTMPL utility implementation on the host computer.
These functions are implemented as assembly language
macros and are defined in the target definition files. The
user should become familiar with those functions that are
available for the target simulator.

Functions produce values of specified data type. The
user must select functions that are compatible with the
required data type of the expression. For example, an
implementation of the utility might support the sine
function for both scaled-fraction and floating-point
numbers (named SINSF and SINFP, respectively). Use of
SINSF in an expression that is required to produce a
floating-point value would be flagged as an error by the
utility.

All unary function names must be immediately
followed by an expression in parentheses. This expression
provides the value of the function argument. The unary
function argument must always be of the same data type
as the function. For computational sequencing the
parsing value of any unary function is assumed by the
utility to be zero. The computational sequence of

(A +SINE(B+ D))

would be

RESULT=B+D
RESULT =SINE (RESULT)
RESULT =A + RESULT

The arguments of multivariable functions are enclosed
in brackets and separated by commas. The arguments
may be any expression with the following restrictions:

(1) The functional arguments must not contain other
multivariable function operands. Therefore multivariable
functions may not be nested within expressions.

(2) The data types of the function arguments must
correspond to those specified in the target definition of
the function. Unlike unary functions the data types of the
function arguments have no required relationship to the
data type of the expression containing the function.

For computational sequencing the parsing value of any
multivariable function is assumed by the utility to be
zero. The computational sequence of

(A+INTEGRAL [STATEI, K/J, B*C])

would be
ARGl =B*C
ARG2=K/J

RESULT =INTEGRAL [STATE1, ARG2, ARGI]
RESULT=A + RESULT

Note that the value of each functional argument is
determined in sequence from right to left.

The RTMPL utility translates operators and functions
into target-defined macro operations that are assembly
language equivalents to the operator/function for the
required data type. If an operator/function does not have
a macro equivalent for the required data type, the utility
will flag an error in the listing. To produce the desired
precision of operator values and to accommodate
particular sources of operands (e.g., register and
memory), the target definition files can contain more
than one macro equivalent for an operator for the
required data type. For example, the ‘““+’’ binary
operator for integer data types might be supported by the
macro’s named

ADDSIIRR ADDS$IIRM ADDSIIRI
ADDS$I2RR ADDSI2RM
ADDSI3RR ADDSI3RM

where ADD$ denotes the operation, I denotes integer
data type, the numbers (1,2,3) denote the precision of the
result value, and the trailing letters specify the source of
the operands. The operand source letters—R, M, and
I—specify register, memory, and immediate data
sources, respectively. A function can have only a single
macro equivalent. The precision of its resuit and the
source of its operands are inherent in its name.

25

For operators the utility may choose a macro
equivalent. In those cases the utility will first look for a
macro that provides the maximum precision of the
operands. If a macro equivalent providing this required
precision does not exist, the required precision will be
reduced until one is found. If the precision of the selected
macro equivalent is less than the required precision of the
expression, a warning is issued in the listing. After the
precision-based search is completed, the utility next tries
to find a suitable macro equivalent that corresponds to
the operand sources.

Once the ‘‘best”” macro equivalent has been selected,
the operands are adjusted accordingly by inserting
housekeeping macros into the computational sequence.
These housekeeping macros consist of precision con-
versions, loading registers from memory, loading
registers with immediate data, and storing registers into
scratch pad memory. These operations, of course, result
in less accuracy and longer execution times. To aid the
user in reformulating the program to improve accuracy
and shorten execution time, a warning is issued each time
a precision conversion macro is inserted into the
computational sequence. This allows the wuser to
reconsider the precision specified for the constants or
variables identified in the warnings.

After the parsing of scaled-fraction expressions the
RTMPL utility will scale the computational sequence.
Since only binary scale factors are allowed in specifying
RTMPL variables and constants, a scaling macro is
inserted where required in the computational sequence.
This macro shifts the result of the preceding operation to
produce the required scaling. Whenever a scaling macro
is inserted, a warning is issued in the listing file. The user
may use these warnings to improve the accuracy and
shorten the execution time of the simulation. Initially the
user may specify the scale factors of variables and
constants to be just large enough to handle the expected
maximum values. Using the scaling warnings from
successive passes of the source files through the utility,
the user may then adjust the scale factors according to the
warning messages. Minimizing the number of warning
messages shortens the execution time of the simulation.
Special warnings are issued by the utility whenever a scale
factor of a variable or constant is required to be larger
than that specified by the user. This warning implies a
potential overflow and should be given special attention.
Underflows may also result from improper scale factor or
precision assignments, but these are not detected by the
RTMPL utility.

Commands

RTMPL provides 13 command statements to allow the
user to implement program control, to interface to target-
defined states, to utilize target library procedures, and to

26

communicate between the various processors in the
simulator. The availability of these commands to the user
requires the generation and definition of the corre-
sponding target macros for the RTMPL utility during
system implementation. Since many of the commands
depend on the configuration, firmware, and data paths in
the simulator, the user should refer to simulator targeting
information for command availability and description.
Use of undefined command statements in user programs
will be flagged as errors by the RTMPL utility.

The COMMAND construct is defined in figure 23.
Commands consist of key words (always followed by an
underscore) and a command-dependent extension.

REDO and EXIT Commands

The REDO and EXIT commands are provided to
enhance the flexibility of conditionals. RTMPL does not
provide loop execution constructs such as

FOR ... DO ...
REPEAT ... UNTIL ...
WHILE ... DO ...

The REDO and EXIT commands, when properly used
within a conditional structure, can provide the same
effect. For example, to raise a variable A to its Nth power
(N =1), a Pascal programmer could write

B:=A;
FORI1:=2TONDOB := B*A; A:= B;

An RTMPL equivalent is

I =ONE;
MULTIPLY B=B*A;
I=1+ONE;

IF_1<N THEN_ REDO_MULTIPLY;! A=B;

In general, an RTMPL requires more statements.
However, the RTMPL program statements more closely
reflect the actual machine operations and usually result in
more time-efficient codes. This is important in devel-
oping real-time simulations, where minimization of
computation time can mean the difference between
success and failure.

As an example of the use of the EXIT command,
consider the programming of Newton’s method for
determining the square root of a positive number. In
Pascal

ROOT :=1;

WHILE ABS(NUMBER/SQR(ROOT)-1)> =
EPSILON DO

ROOT : = (NUMBER/ROOT + ROOT)/2;

The RTMPL equivalent is

Command
o[-
EDO. (statement label)
EXIT NAME (conditional L
o statement label) f

(Default to lowest nested IF statement)
N »((ENABLE_ (’\::S"QEID) -
lask I ”

N\

DISPATCH NAME >
{task ID)
9
SET NAME N

(target state)

NAME
{target state)

:

RESET_
EXECUTE_ NAME -
{target macro)

L,..CALL »|NAME
(target procedure))

- NAME g
(arqument group)
b
NAME
ADVISE @ (message 1D) -
NAME I
() > {message D)
@ NAME . =
{argument group)

NAME
ACTIVATE_ {exec ID)

RETURN >

Wimited to eight argument groups,

Figure 23, - Commands,

ROOT =ONE;

TESTROOT IF_ ABS

(NUMBER/SQR(ROOT) — ONE) < EPSILON
THEN_ EXIT_;

ELSE_ ROOT = (NUMBER/RQOT + ROOT)/TWO;
REDO_TESTROOT;!

This example assumes the existence of the unary
functions ABS (absolute value) and SQR (square). They
must appear in the target definition files for the data type
of the arguments. If no operand is supplied with the

EXIT command, execution of the EXIT command will
transfer program control to the statement following the
exclamation point associated with the current conditional
level. By supplying an operand, one can specify the
conditional level to be exited. The statement

EXIT_TESTROOT;

would result in the same branching as the previous
example.

To program the complex conditional logic contained in
the Pascal statement

IF ((A<B) AND ((C<D) OR (E<F))) THEN G :=H;
the RTMPL user could write

_DOLOGIC_IF_A<B THEN_
IF_C#<D THEN_
IF_E#<F THEN_EXIT_DOLOGIC;!!
G=H;!

The double exclamation point terminates the C# <D and
E#<F conditionals so that G=H will be computed if
either conditional is false. Otherwise the conditional
labeled ‘“‘DOLOGIC” will be terminated and program
control will be passed to the statement following the last
conditional terminator(!).

The redo command allows the user to specify any
previously defined label as the operand and thus permits
backward jumps only. REDO may be used only within a
conditional statement. EXIT also may be used only
within a conditional statement to terminate the execution
of that or a higher level conditional statement.

ENABLE and DISABLE Commands

The ENABLE and DISABLE commands allow the
user to enable or disable the execution of any task defined
in the program file. A task is executed only if the task is
enabled (see ENTER and DISPATCH commands).
Tasks may also be enabled or disabled at run time by
using RTMPOS.

ENTER Command

The ENTER command causes program control to pass
from an executive to a specified task if that task is
enabled. It is valid only if used in an EXEC record. That
is, a task cannot enter another task. The statements

ENTER_TASKA;
ENTER_TASKB;

cause sequential execution of TASKA and TASKB. Upon
completion of TASKA (see RETURN command)

27

program control would revert to the executive, which
would then transfer control to TASKB.

To minimize execution time, the ENTER command, by
itself, does not preserve data registers. However, if
executives of different priorities can execute a task, the
RTMPL utility will change the ENTER command to a
REENTER command. This will cause data registers to be
preserved for reentry. The REENTER command is not
available to the user but will appear on listings when
generated by the utility. Scratch-pad memory conflicts
are avoided by having a task scratch pad contained within
executive memory space.

DISPATCH Command

The DISPATCH command is used to restrict execution
of a task until all of the external variables required by
that task are available. It is valid only when used in an
EXEC record. The target processor can sense through
firmware when variables have been transferred to its
memory from another processor. The statement

DISPATCH_ TASKA, TASKB, TASKC;

will cause the local PREP to cyclicly test required
variables for each task. If the variables for a task have
arrived, the task is executed and marked complete. If a
task is disabled, it is marked complete without variable
testing. Upon completion of TASKB, for example, the
processor would continue cyclic testing of TASKC and
TASKA until they have also been marked complete.
When all tasks are completed, they are remarked
incomplete and the statement following DISPATCH is
executed.

The RTMPL utility determines what external variables
are necessary for DISPATCH. The utility does not
provide for task reenterability when executed under
DISPATCH. To avoid the problem, the user should only
dispatch tasks from background executives.

SET and RESET Commands

The SET and RESET commands are used to manip-
ulate the values of target Boolean variables. For example,
the target processor may contain a bit in its status register
that is a target Boolean variable called OVERFLOW. If
the bit is automatically set when an arithmetic operation
results in a register overflow condition, the statements

A=B+C
IF_ OVERFLOW THEN_
A = AMAX;

RESET_OVERFLOW;!

will test the bit for an overflow in the computation of A.
If an overflow occurs, A will be limited and the bit reset

28

in the status register. RESET assigns the Boolean value
FALSE to a target state variable; SET assigns the
Boolean value TRUE to a target state variable.

EXECUTE Command

The EXECUTE command is a general-purpose
command that permits the user to execute any target-
defined macro. Uses for this command depend strictly on
the simulator definition. For example, a simulator macro
could be defined that copies the value of the program
counter into a preassigned location and terminates
simulation processing. The macro could be called HALT.
Then the statement

EXECUTE_HALT;

would cause execution of that macro. The present version
of the utility does not permit the use of the EXECUTE
command for macros requiring arguments.

CALL Command

The CALL command is used to invoke target library
procedures. These procedures are prewritten during
system installation and are, as needed, linked to the
user’s program during generation of the assembly
language program. Target library procedures commun-
icate with calling programs via argument groups
(Argument Groups, Chapter 4). Argument groups
contain constants and variables of the same data type and
precision. The RTMPL utility structures the assembly
language representations of the argument groups and the
CALL command to pass the number of items in the
group, the address of each item, and a processed value
for each item to the procedure (Assembler Source Files,
Chapter 9). The processed value may be used as an input
argument to the procedure (formulated by other
procedures or by RTMPOS) or as an output argument
(formulated by the procedure itself). Processed values
should not be confused with assigned values, which are
results of assighment statements (variables) or defined
values (constants). Assigned values may be used as input
arguments for procedures. These are obtained from the
specified item address. RTMPL assumes that an assigned
value will never be an output argument of a procedure,
although this is possible.

Target library procedures are useful for processing
large volumes of data for display or analysis. Since their
execution will normally be time consuming, they are
usually not called from simulation programs but rather
from RTX programs. For example, assume a procedure
called SAMPLE exists in the target library and that its
purpose is to obtain current values of single-precision,
scale-fraction variables for output to data files. The user
would first define an ARGGROUP to specify those
variables:

ARGGROUP: SAMPDATA =51, 25 [A,B,C,D]; EOR_;

This example specifies SAMPDATA as an argument
group of DTP=S1 with a maximum of 25 items and
initialized to contain four variables (A, B, C, and D). The
procedure SAMPLE would be invoked as

CALL_SAMPLE[SAMPDATAYJ;

When executed, SAMPLE would obtain current assigned
values of A, B, C, and D and would store these values in
their respective processed-value locations for use by the
calling program. The calling program could then output
the data to the disk by using the ADVISE command (see
the next section). At run time SAMPDATA could be
edited by RTMPOS to add up to 21 additional items of
the same DTP to the argument group. Item removal and
replacement is also possible.

The CALL construct (fig. 23) allows more than one (up
to eight) ARGGROUP’s to be specified as procedural
arguments. This feature accommodates those procedures
that require arguments of multiple data type and
precision. Before using this construct the user should
become familiar with the procedures contained in the
target library and with their argument requirements.

ADVISE Command

ADVISE is used to interface a user program to
RTMPOS. It consists of the command name, an action
code, and an object. The action code is separated from
the object by a decimal point. Table IV defines the
function of the various action codes. For example, one
could display a message, defined in the global data file as

MESSAGE:
TSLIMIT =STATION*S*TEMPERATURE*
LIMIT*EXCEEDED; EOR_;

by using the message advisory command
ADVISE_M.T5LIMIT;

When the command statement is executed, the TSLIMIT
message appears on the terminal screen. If the action

code were changed to an ‘‘H,”’ the simulation would

TABLE IV.—ADVISORY ACTIONS

Action
code

RTMPOS function

M Displays message specified as object on user’s terminal

H. Stops simulation execution and displays message specified as
object on user’s terminal
R. Reads argument group specified as object from disk data

file to local processor

stop. With the ‘“M” action code the simulation
continues.

The R action code (read advisory) causes the
referenced argument group to be read from local memory
and processed (filed or displayed) by the operating system
(RTMPOS). For example, to send the SAMPDATA
argument group to a disk file after sampling, the
statements would be

CALL_SAMPLE[SAMPDATA];
ADVISE_R.SAMPDATA;

Because of the multitude of data that can be transferred
by using the read advisory, it may only be used in
programs that are to reside on processors with direct
access to the interactive information bus (COMP’s).

Execution of the ADVISE command causes a priority
interrupt to be issued from the local processor to the
FEP. The FEP stops executing the RTMPOS background
executive, obtains the action code and object from the
local processor, and takes appropriate action. The
RTMPOS background executive is then resumed. This
priority processing ensures prompt action when executing
the ADVISE command statement. Local processor
program execution is delayed, as required, for memory
access by the FEP. This delay could be substantial during
processing of an ‘‘R’’ action. These delays must be
considered by the user when structuring the simulation
programs. In most cases it is best to issue advisories from
processors intended for the RTX function.

ACTIVATE Command

ACTIVATE provides the mechanism for initiating
execution of foreground (priority level >0) executives on
the aiternate processor in the local channel (i.e., a PREP
may activate a COMP EXEC and vice versa). The
operand must be the name of a foreground executive
defined in the alternate processor program. For example,
suppose that, in the program file DSCPREP.
CHANNELA, a foreground EXEC record is defined as

EXEC: DOTASKS [1];
ENTER _TASKA; ENTER_TASKB;
EOR;

and that the companion COMP file (DSC.CHANNELA)
contains the statement

ACTIVATE_DOTASKS;

Upon execution of the ACTIVATE command statement,
the COMP would issue an interrupt to the PREP. The
PREP would respond by reading the desired priority level
(1) specified by the operand DOTASKS. From this the

29

PREP would determine the foreground executive to be
executed. If a lower priority executive were active (the
background EXEC in this case), its execution would be
interrupted, DOTASKS would be executed, and the
execution of the interrupted EXEC would be resumed. If
a higher priority executive were active, DOTASKS would
be placed in a pending que. It would then be executed
when all higher priority EXEC’s were completed.

RETURN Command

RETURN is used to terminate the execution of
executives and tasks and must always be the last

30

executable statement in each. It may also be contained
within the body of a task or executive to allow
termination as the result of conditionals. Execution of
RETURN in a task restores program control to the
executive from which the task was entered. If the task is
reenterable, the saved registers will be restored.
Execution of RETURN in an executive transfers program
control to the next lowest priority executive pending (see
ACTIVATE command). If no foreground executive is
pending, the background executive is resumed. If the
RETURN command is encountered in a background
executive, program control returns to the processor’s
firmware.

Chapter 6: RTMPL Simulation

The programming of a simple multiprocessor
simulation will be used to illustrate some major
operational aspects of the RTMPL utility and as an
example of the object and listing files. In this chapter the
simulation is described, the RTMPL source files are
generated, and the use of the RTMPL utility to process
these files is presented.

Description

A jei engine dual-exhaust-nozzle system is illustrated in
figure 24(a). The nozzle system was chosen as the
simulation example because the mathematical model of
the nozzle (also shown) is fairly simple and lends itself to
straight-forward partitioning into multiprocessor pro-
grams. The nozzle is modeled as two separate nozzles fed
by separate core (CN) and duct (DN) sections of a
turbofan engine (not simulated). It is assumed that the
inlet conditions for the core and duct nozzles are known.
They are pressures (PCN, PDN), temperatures (TCN,
TDN), and weight flow rates (WCN, WDN). Both gas
flows exit at the ambient pressure, P0. In the simulation
the flow areas of both nozzles (ACN, ADN) are to be
calculated with the constraint that the sum of the physical
areas for the two nozzles is equal to the actual physical
area (AN).

For the purpose of the example it is assumed that AN is
specified as an input to the simulation and is read at the
start of each computation interval through an analog-to-
digital converter (ADC). For this simulation PCN, PDN,
TCN, TDN, WCN, and PO will be parameters. These
parameters can be adjusted by the user at run time by
using RTMPOS. The duct weight flow (WDN) and the
core and duct nozzle areas (ACN, ADN) will be
calculated variables. Finally it is assumed that the
variables ACN and ADN will be output from the
simulation through a digital-to-analog converter (DAC).

l ~Duct
/ norzle
PDN
TON | —™ tADN
WON —»P0
PCN
TCN — ACN S
WCN ¢
3
PON . ————*=P{
TON | — Core
WON nozzle
AN
(@) Pictorial diagram.
Segment 1 | Segment 2
PCN Il POoN PO KON TDN
P0 KCN WCT TCN AN
N\ ¥ \¥ / | \ / \ / Global
ACNA | PRD WDNA
CFLC CFFNA CFFNB l DFLC DFFNA DFFNB
¥ | \
CFFN J DFFN\
\ / WONB
/
ACN /
\ -
ADN //WDNC
- — Sample
Natural —~ / Twion 7 breskan

break
up \\/ %

{b) Segments of data flow diagram.

Figure 24, - Dual-exhaust-nozzle system,

Mathematical Model

For the dual-exhaust-nozzle system the given values are
PO, PCN, KCN, WCT, TCN, AN, PDN, KDN, and
TDN. All variables are expressed as computer variables
to avoid dual definitions and are presented in table V.
The equations used to model the system are

31

TABLE V.—SIMULATION VARIABLES AND PARAMETERS

Identification Description Type
AN Total nozzle physical area Variable
ANF Total nozzle flow area
CFLC Flow coefficient (core)
CFFN Flow function {(core)
CFFNA CFFN intermediate calculation (core)
CFFNB CFFN intermediate calculation (core)
DFLC Flow coefficient (duct)
DFFN Flow function (duct)
DFFNA DFFN intermediate calculation (duct)
DFFNB DFFN intermediate calculation (duct) Y
PO Ambient exhaust pressure Parameter
PRC Core nozzle pressure ratio Variable
PCN Core nozzle inlet pressure Parameter
TCN Core nozzle inlet temperature Parameter
WCN Core nozzle inlet weight flow Parameter
ACN Core nozzle flow area Variable
ACNA ACN intermediate calculation Variable
PRD Duct nozzle pressure ratio Variable
PDN Duct nozzle inlet pressure Parameter
TDN Duct nozzle inlet temperature Parameter
WDN Duct nozzle inlet weight flow Variable
WDNA WDN intermediate calculation
WDNB WDN intermediate calculation
WDNC WDN intermediate calculation
ADN Duct nozzle flow area
PREPDONE | Interchannel logic variable
DUCTDONE | Interchannel logic variable
JOBDONE Program-complete logic variable | ~———————
AN=AN+800. where 50.<AN <1600. 1)
ANF =1.049 — 1.622E —4 x AN 2)
PRC=P0/PCN 3)
0.825 if CFLC <0.825
CFLC= 1.3635-0.7158 X PRC 4)
1.0 if CFLC=1.0
CFFNA =PR(C0.7143)
CFFNB = [1.0 — PRC0.2857)!/2 (6)
0.2588 if PRC=<0.53
CFFN = ,)
CFFNA xCFFNB if PRC>0.53
PRD =P0/PDN (8)
ACNA =KCN X WCN x TCN1/2 ©)
0.0 if CFFN <0.0
ACN = (10)
ACNA <X CFFN X CFLC/PC

32

0.0 if ACN=0.0
ADN = (11)
ANF — ACN
0.825 if DFLC <0.825
DFLC= 1.575-PRD (12)
1.0 if DFLC21.0
DFFNB = PRD0.7143 (13)
DFFNB = [1.0 - PRD0-2857]1/2 (14)
WDNA = KDN x TDN!/2 (15)
0.2588 if PRD <0.53
DFFN = . (16)
DFFNA x DFFNB if PRD>0.53
WDNB = DFFN x DFLC/WDNA a7
WDNC = PDN x WDNB (18)
WDN = ADN x WDNC (19)

Model Partitioning and Allocation

Before the model can be described in RTMPL, it must
be partitioned and the resulting segments allocated to the
processors in a selected configuration. The partitioning
and allocation will depend on the number of channels in
the simulator and the availability of COMP and PREP
processors in the channels. Although the actual parti-
tioning of mathematical models is not a primary topic of
this report, it will be helpful to understand how the
example problem was partitioned and how data were
transferred between the channels. Figure 24(b) shows a
data flow diagram of the equations in the nozzle model.
Note from the structure of the diagram that the model
naturally breaks up into parallel segments, as indicated
by the dashed line. The only ‘‘crosstalk’ between the
segments is the WDN calculation, which needs ADN
from segment 1 and WDCN from segment 2. However,
to demonstrate the transfer of data in RTMPL, the
diagram was broken up into two segments, as indicated
by the solid line. The calculations of both WDCN and
WDN were put into segment 1.

Since the model breaks up into two segments, three
channels were used: two channels for the model
calculations (the DSC channels) and one for the
input/output and user interaction (the RTX channel).
Since it is assumed that there is a COMP and a PREP in
each channel, the problem was further broken up into six
segments as shown in figure 25, which was derived from

ACN, ADN
Read ADC Wait Advise .
Channel 1 PREP for AN “ JOBDONE calculation || Wr‘,‘ebloAC Return
set complete variables
JOBDONE
WDNB
PREPDONE _.(PRC >_>CCFLCD__<CFFNA>_> Set w Set Retorn
PREP |
DUCTDONE PREPDONE DUCTDONE
—_— PREP DONE (from channel PREP) CFFNA CFLC
Channel 2 Reset
JOBDONE
PREPDONE
CcompP
D GO
DUCTDONE JOBDONE
DUCTDONE ? ANF T WDNC T
A
Reset Set
PREP PREPDONE m DFRLC @ prEPDONE] Return >
Channel 3 D— PREPDONE {from channel 3 PREP) DFFNA DFLC
¥
Advise
CompP PRD DFFNB WDNA if not DFFN @ Return
PREPDONE
) Variables selected at run time
]
Sample |] Transfer | |
Channel 1 comp data data Return

l

Figure 25, - Computational flow diagram.

the data flow chart (fig. 24(b)). In figure 25, variables
within the oval elements represent the equations used to
calculate the variables. Other program functions are
shown in rectangles. In general, the segments were
partitioned and allocated to demonstrate RTMPL rather
than the solution of the problem. For a time-critical
problem care must be taken in allocating calculations.
The philosophy used for the example problem allocation
is as follows:

(1) Channel 1 was selected as the RTX channel.

(&) It was assumed that the PREP processor in
channel 1 is connected to the outside world through ADC
and DAC. Since it is desired to read AN from an ADC,
the calculation of ANF was assigned to that channel.

(b) The COMP processor in channel 1 was used for
the input and adjustment of PCN, PO, etc., and for user
interaction with the simulation.

(2) Channel 2 was designated as the segment 1 channel.
In general, calculations were distributed between the
COMP and the PREP to demonstrate data transfers. For
example, variables CFFNA and WDNC must be
transferred from the channel 2 PREP to the channel 2

COMP. Also ANF must be transferred from the
channel 1 PREP to the channel 2 COMP.

(3) Channel 3 was used as the segment 2 channel. Here
also calculations were distributed between the COMP
and the PREP to demonstrate data transfers. For
example, DFLC and DFFNA must be transferred from
the channel 3 PREP to the channel 3 COMP. Note also
that WDNB must be transferred from the channel 3
COMP to the channel 2 PREP.

Thus the arbitrary breakup of the model has variables
transferred from (1) a PREP to a COMP in the same
channel, (2) a PREP in one channel to a COMP in
another channel, and (3) a COMP in one channel to a
PREP in another channel.

Channel and processor assignments are shown on the
left side in the computational flow diagram (fig. 25). The
string of calculations/operations assigned to each
processor is shown on the right side. Data transfer
between processors is also indicated. Boolean variables
PREPDONE, DUCTDONE, and JOBDONE were
added to the simulation simply as a mechanism to
demonstrate the ADVISE command. Although providing

33

some data transfer synchronization, they are unnecessary
since the RTMPL utility automates this synchronization
(Information Transfer, Chapter 1).

Depending on the application of a simulation it is often
desirable to include certain analytical computations to
permit the gathering of data, the monitoring of simulator
performance, and the control of the simulation
execution. Under RTMPOS many analytical functions
can be performed. Many of the RTMPL constructs are
designed to support analytical functions. As discussed
earlier, advisories allow the user to display messages and
to stop execution on the basis of simulation performance.
They also support the gathering of data structured in
terms of argument groups. The CALL command allows
analytical routines from the target library to be
incorporated into the simulation. Task enabling and
disabling may be used to control the execution of the
analytical functions (as well as the mathematical model).
The ACTIVATE command may be used to trigger
analytical functions on the alternate processor in a
channel on the basis of occurrences in the local
processor’s calculations. The example simulation
incorporates many of these constructs.

At run time the user specifies the parametric values and
sets the simulation calculation update interval by using
RTMPOS. During execution the simulation is repetitively
calculated, once each update interval. The calculations
on each processor proceed sequentially, as diagrammed
in figure 25. The following paragraphs describe the
desired sequence of operations.

The PREP in the RTX channel (channel 1) reads the
ADC for AN, and computes the flow area, ANF, for use
on the COMP in channel 2. Its task is then complete until
the mathematical model has been computed. This is
determined by the Boolean variable JOBDONE,
calculated on the COMP in channel 2. When JOBDONE
becomes true, the channel 1 PREP writes ACN, ADN,
CFFNB, and DFFNB to DAC’s and advises the operator
of the completion of the calculation sequence.

The DSC PREP in channel 2 controls the Boolean
variables PREPDONE and DUCTDONE. They are used
on the channel 2 COMP to advise the operator of
calculation delays if the channel 2 PREP or channel 3
data (respectively) have not arrived when required to
complete the channel 2 COMP calculations. Note that
CFLC and CFFNA are required for calculating ACN.
PREPDONE is set after their calculation. The channel 2
PREP then computes WDNC on the basis of WDNB
computed in channel 3. When this calculation is
complete, DUCTDONE is set. The channel 2 COMP
then completes its calculation sequence by computing
ADN and WDN and then setting JOBDONE true.

The channel 3 processors work in tandem to calculate
WDNB. Another PREPDONE variable is used to signal

34

the operator of calculation delay due to PREP data
(DFFNA) not arriving on time to complete the calcula-
tion of WDNB on the COMP.

The COMP processor in the RTX channel (channel 1)
is assigned the task of sampling simulation data and
transferring these data to the FEP for analysis. Argument
groups are used in developing the RTX COMP to present
the run-time selection of the data items to be sampled.

Model Translation to RTMPL

RTMPL contains both a programming language for
the mathematical model on the parallel processors and a
set of commands for coordinating execution and
obtaining data and for interaction of the simulation with
the user and the real-time world. The different aspects of
the language will be covered in the context of the sample
problem.

Equations (1) to (19) must be converted to RTMPL by
using the constructs defined in figures 10 to 12 and 18 to
22. This will be done for each channel and processor
according to the variable distribution in figure 25. Note
that no simulation equations are assigned to channel 1
COMP, which is reserved for analysis functions.

Channel 1 PREP

The only two equations solved on the channel 1 PREP
are equations (1) and (2). The constants in these
equations are 1.049, 1.622E-4, 50., 800., and 1600. From
the definitions of figure 12

K1P049=S51/1[1.049];
K1P622M4 =S1/ - 12[1.622E-4];
MINAREA =S51/11[50.];
MAXAREA =S81/11[1600];

K2 =S1/11[800.};

The variables are AN and ANF. From the variable
definition of figure 11

AN =S1/11[1600.,1600.];
ANF=S1/11[1263.168,1263.168];

From figures 19 to 21(a) equation (1) becomes
AN =AN +K2;

IF_ AN <MINAREA
THEN_ AN =MINAREA;

ELSE_
1IF_ AN>MAXAREA
THEN_AN=MAXAREA; !! (20)

Equation (2) becomes

ANF =K1P049 — K1P622M4 * AN; (21

Channel 2 PREP

The equations solved on the channel 2 PREP are (3) to
(5) and (18). The constants are PO, PCN, 1.3635, 0.7158,
0.825, 1.0, and PDN. From the construct of figure 12

K1P3625=S1/1[1.3625];
KP7158 =S1/0[.7158];
KP825 =S1/0[.825];
K1P =S1/1[1.0];
PO=S1/6[14.7];

PCN =S1/7[14.7];

PDN =S1/7[14.7):

The variables are PRC, CFLC, CFFNA, WDNC, and
WDNB. From the construct in figure 11

PRC=S1/1[1./1.];
CFFNA =S1/1[1./1.];
CFLC =S1/1[.825/.825];
WDNC = S1/2[.825/.825];

WDNB comes from channel 3 COMP, and from the
figure 13 construct it is referenced as

(channel 3 name).C.WDNB

The equations are translated to RTMPL. From figures 19
and 21(a) equation (3) becomes

PRC=P0/PCN; (22)
and equation (4), from figures 19 to 21(a), becomes
CFLC=KI1P3625 - KI1P7158 * PRC;

IF_ CFLC>KIP

THEN_ CFLC =K1P;

ELSE_

IF_ CFLC <KP825

THEN_ CFLC =KP825; !! (23)

Equation (5) is an exponential and can be solved by
using a univariate function. The function will be defined
as FUN1 with the construct

CFFNA =FUN1[PRXVALS,PRNVALS,XT07143,
PRC]; (24)

where

PRNVALS =11{21];

PRXVALS=S1/1,21[0.,.05,.10,.15,.20,.25,.30, .35,
.40,.45,.50,.55,.60,.65,.70,.75,.80,.85,
.90,.95,1.0];

XT07143 =S1/1,21[0.000,.1177,.1931,.2579,.3166,
.3820,.4232,.4724,.5197,.5653,.6095,
.6524,.6943,.7351,.7751,.8142,.8527,
.8904,.9275,.9640,1.000];

The method is to calculate PRC, search the range of
PRXVALS, find the corresponding values in XT07143,
and interpolate.

Equation (18) involves a transfer variable WDNB:

WDNC =PDN * {(channel 3 name).C.WDNB; (25)

Channel 2 COMP

The equations solved on the channel 2 COMP are (3),
6), (7), (9) to (11), and (19). The constants are PO, PCN,
1.0, KCN, 0.2588, WCN, TCN, 0.53, and 0.0. From the
constructs of figure 12

PO=S1/6[14.7);
PCN =S1/7[14.7];

KIP =SI/1[1.];

KCN =S1/0[.5124];
KP2588 =S1/— 1[.2588];
KP53 =S1/0[.53];

ZERO =S1/0[0.];

WCN =S1/8[0.];

TCN =S1/13[900.1;

The variables are PRC, CFFNB, ACNA, CFFN, ACN,
CFLC, CFFNA, ADN, WDN, ANF, and WDNC. From
the construct of figure 11

PRC=S1/1[1./1.];
CFFNB=S1/1[1.,1.];
ACNA =S1/11(0.,0.];
CFFN =8§1/2[0.,0.1;
ACN =851/10[0.,0.];
ADN =S51/10[0.,0.];
WDN =8S1/9[0.,0.];

CFLC, CFFNA, and WDNC are variables transferred
from the channel 2 PREP. Thus from the construct of
figure 13 these variables are referenced as
.P.CFLC,.P.CFFNA, and.P.WDNE, respectively.

ANF is transferred from the channel 1 PREP and
referenced as

(channel 1 name).P.ANF

35

From figures 19 and 21(a), equation (3) becomes
PRC =P0/PCN; (26)

Note that this equation was also implemented on
channel 2 PREP to avoid data transfer delays. Equation
(6) uses the FUNI function and a square root univariate
function (SQRT):

FFNB = SQRT(K1P - FUN1[PRXVALS,PRNVALS,
XT02857,PRC]; (PX))]

where

PRNVALS =11[21];
PRXVALS=S1/1,21[etc.];
XT02857=S1/1,21[etc.];

Equation (9) becomes
ACNA =KCN * WCN * SQRT (TCN); (28)
From figures 19 to 21(a) equation (7) becomes

IF_ PRC#>KPS353
THEN_ CFFN =KP2588;
ELSE_CFFN=CFFNB * .P.CFFNA; ! (29)

Equation (10) becomes

IF_ CFFN>ZERO
THEN_ ACN =ACNA * CFFN * .P.CFLC/PCN;
ELSE_ACN=ZERO;! 30)

Equation (11) becomes

IF_ ACN=ZERO
THEN_ ADN =ZERO;
ELSE_ ADN = (CHANNEL 1 name).P.ANF —ACN; !

(31
Equation (19) becomes

WDN =ADN * .P.WDNC; (32)

Channel 3 PREP

Equations (8), (12), and (13) are solved on the
channel 3 PREP. The constants are PO, PDN, 1.575,
0.825, and 1.0. From the construct in figure 12

PO =S1/6[14.7];

PDN =S1/7[14.7];
K1P575=S1/1[1.575];
KP825 =S1/0[.825];
KIP=S1/1[L.];

36

The variables are PRD, DFLC, and DFFNA. From the
construct in figure 11

PRD=S1/1[1./1.];
DFLC =S1/1[.825/.825];
DFFNA =S1/1[1./1.];

From figures 19 and 21(a) equation (8) becomes
PRD =P0/PDN; (33)
and equation (12) becomes

DFLC =K1P575 — PRD;

IF_ DFLC>KIP

THEN_ DFLC =KI1P;

ELSE_

IF_ DFLC <KP825

THEN_ DFLC =KP825; !! (34)

Equation (13) becomes

DFFNA = FUNI[PRXVALS,PRNVALS,XT07143,
PRDJ; (35)

where

PRNVALS =11[21};
PRXVALS =S1/1,21[etc.];
XTO07143 =S1/1,21[etc.];

Channel 3 COMP

The equations solved on the channel 3 COMP are (8)
and (14) to (17). The constants are PO, PDN, 1.0, KDN,
TDN, 0.2588, and 0.53. From the constructs in figure 12

PO =S1/6[14.7];
PDN =S1/7[14.7];
TDN =S1/13[900.];
KDN = S1/0[.50655];
KIP=S1/1[L.);
KP2588 = S1/0[.2588);
KP53 =S1/0[.53];

The variables are PRD, DFFNB, WDNA, DFFNA,
DFFN, WDNB, and DFLC. From figure 11

PRD=S1/1[1./1.];
DFFNB=S1/1[1./1.];

WDNA =S1/8[151.665/151.665];
DFFN =S1/2[0./0.];

WDNB =S51/5[0./0.];

DFFNA and DFLC are transfer variables from the
channel 3 PREP; thus from figure 13, they are referenced

as .P.DFFNA and .P.DFLC, respectively. From figures
19 and 21(a) equation (8) becomes
PRD =P0/PDN; (36)

Using the SQRT and FUNI functions we get equation
(14) as

DFFNB = SQRT(K1P - FUN1[PRXVALS,PRNVALS,

XT02857,PRD]; 37
Equation (15) becomes
WDNA =KDN * SQRT(TDN); (38)
Equation (17) becomes
WDNB =DFFN * .P.DFLC/WDNA; 39)

047

{a) Control,

FAGE 1 LIST VERSION 042682 3

'—‘SJ /6L1L4.705%

31/77014.7 13
1/7044.7 13
1/13C900. 2%
17130900, 703

121713

[PR PR T I R
XTOZ8E7=81/1y210 00y 4 4249y o1
+BI03y B4

AT RN

XTO7143=61/1 v 210049+ 1177y s 1931y 25799 4 31659 2 BB20y + 4232y 2 4724y 45197y

LAHNDS cOTRG L AHPAEY TBGLy s 77y BLAZ2y JBE2T Y 8F04y 92

V9640 LT3
EORS

LEsLised ngos

12/7311/84

From figures 19 to 21(a) equation (16) becomes

IF_ PRD#>KP53
THEN_ DFFN =KP2588;
ELSE_DFFN =DFFNB *

.P.DFFNA; ! (40)

Example Source Files

The required RTMPL source files are a control file, a
global data file, and program source files for the various
processors. The files are shown in figure 26 and will be
described in detail for the example problem.

Control Segment Source File

The control file for the simulation is arbitrarily named
“DUALSIM” and is shown in figure 26(a). The
construct for the file is given in figure 7. In the file the

08205318 DEVL 0. GLOEAL . DUALNOZZ

1=STMULATIONKHAL T P xADCXVALUEXOF XANX - XMINAREA 3
LATIONXHALT ! XADCRVAL UEROF KAONX=XMAXAREA 3

CORE I-:S]: —“.ﬁHUI ATIONXHALT | XFRCXOVERFLOW?
TMULATIONXHALT | XFRDXOVERFLOW
DU(r IM*UF\)K(\DCXDL L. (‘W*[NCOUN TEF

1y 21E0.2.05r 01y o152y o259 ¢35 355 .9y v A5 .09 8T by s &0y 70 75y

45160y 5816y 6314y 730y JTOBYy . TA0P v . 76EF7 y TPEQy
1y BE4T L BB4Z Y P03y (PELLy (P3BE P56y PT 0By

(b) Global data.
Figure 26, - Dual-nozzle simulation source files,

37

38

FaGE 1 LIGT VERSION 042682 3 12711784 08204112 DEVL L0 RTXFREF . DATAFROC

JEDONE §
WETACN y WIRTADN S

:

e O JOBDONE THEN¢

SEM o (s AN
RESIM . Ca DM

H
f

Je 13
Lone. F
- 04913

VA

AN
EORS

ANF 1263 1681

(c) DATAPROC channel, PREP program,

FAGE 1 LAET

CRETON 042482 3 12010784 08004500 DEML S0 KT DaTak RO

GG ¢ EADADCT LS
o F Ne o P MIENARE S THENSG ADVI
CTLIRING 3

L6k e PEME

DA TS L LAV ey o o ANE» CORE
EGIM WENN T

5 AR GO

Mo AUN v (O

y DUCTEIM FRD Y

(d» DATAPROC channel, COMP program,
Figure 26. - Continued.

mAGE 1 LIST VERSION 042682 3 12/714/784 03104143 DEVL 10 DESCFREF, CORESIM

RETURNS 3
EORS

EQRS

EB2S5 THENG FLO=KPBZS 1!

W P)

1700 .825138

{e) CORESIM channel, PREP program,

P AGE 1 LIST VERSION 042662 3

iy H,F
TF¢ ALN
Wi [INX

SL/101, /1. 15

12/711/84 08104

DEVLI0 DS CORESTM

=ZERDS Y

ATAFROC P NF -~ ACNS !

P N NP R O it 1 SR oD W N WA e 2 B

WA N R RN]

(i CORESIM channel, COMP program,
Figure 26. - Continued.

name of the simulation is DUALNOZZ; the volume (or
disk) for the source, object, and data base is DEV1; the
user number is 0; the number of channels is three. The
first channel is RTX.DATAPROC; the second is
DSC.CORESIM; the third is DSC.DUCTSIM. There will
be global data, so GLOBAL.DUALNOZZ is specified,
and the target file catalog name is MC68000. The global
file name and the program file names—one for each of
the six processors—must be the same as specified in the
control file. The file names are

Channel 1 program file:
DEVI1:0.RTXPREP.DATAPROC.SA
DEVI1:0.RTX.DATAPROC.SA

Channel 2 program file:
DEV1:0.DSCPREP.CORESIM.SA
DEV1:0.DSC.CORESIM.SA

Channel 3 program file:
DEV1:0.DSCPREP.DUCTSIM.SA
DEV1:0.DSC.DUCTSIM.SA

Global file:
DEV1:0.GLOBAL.DUALNOZZ.SA

This is a VERSAdos format.

39

FOGE 1

=i BELBES XF
INMELS s XTO7 193,

RETURNE 3
EQR}

CONSTANT ¢

P 79=51 /7001 057505 HLIP=81/101. 1% KPa2b=

EORS

LIST VERSION 0424682 3 12711/84 08105107

DEVL$ 0. DSCPREF . DUCTSTM

FLCCHFEZ2E THENS FLO=HF82E5 1!
RO

S1/00.82%1

{g) DUCTSIM channel, PREP program,

N* P FLCAWDNA G
RETURNS 3
ECRS

CONSTANT §
PGl /00 L0 KDN=GL/Z0 cO0650 T KPS
EQRS

LIST VERSION 042662 3 12/11/849 08104155

DEVLT0. DS, DUCTEIM

(h) DUCTSIM channel, COMP program,
Figure 26, - Concluded.

Global Data Segment Source File

The global data file format (fig. 9) consists of global
constant (GLCNST) and message (MESSAGE) records.
For the dual-nozzle simulation the file is shown in figure
26(b). Note that the MESSAGE record contains eight
messages that can be invoked at different parts of the
simulation to advise the user of the simulation progress.
The GLCNST record consists of all constants to be
distributed to all channels. The dot in front of the
constant means that the constant is a parameter. Note
that the vectors needed for the FUNI function are also
included in the global data.

Program Source Files

RTMPL program files consist of at least one EXEC
record and can include VARIABLE, CONSTANT,
ARGGROUP, and TASK records. The construct for the
program file is shown in figure 8. The construct, along

40

with the computational flow diagram of figure 25, was
used to create the program files for the six processors.

Channel 1 PREP.—Channel 1, the RTX channel, is
given the name DATAPROC. The file name for the
PREP is DEV1:0.RTXPREP.DATAPROC.SA. The file
(fig. 26(c)) consists of one EXEC, three TASK, two
ARGGROUP, one CONSTANT, and one VARIABLE
record. The EXEC record is

EXEC:GETANI0];

Since the first part of the diagram in figure 25 says to
read an ADC for variable AN, the executive was
arbitrarily named GETAN and given a zero priority level
(fig. 7), which is a background or lowest priority (fig. 15)
job.

The actual reading of the ADC is done with the
CALL_ command (fig. 23):

CALL_ READ[ADCVAR,ADCCHN];

where READ is the target procedure, ADCVAR is an
argument group containing the variable AN, and
ADCCHN is an argument group containing the ADC
channel number. ANF is then calculated by using
equations (20) and (21). Note that the ACTIVATE_
command is used (fig. 23) if AN>MAXAREA or
AN<MINAREA. This sends an interrupt to the
DATAPROC COMP and the corresponding EXEC
(BADADC) is activated there. Next a Boolean variable is
checked to see if the simulation has completed the
calculation of WDN in the channel 2 COMP. The
ENTER command (fig. 23)

ENTER_ JOBDONE;

is used, where JOBDONE is a task that does the actual
testing and must be defined in this source file.

After execution of the JOBDONE task, ACN and
ADN are written to DAC’s by using the DISPATCH_
command from figure 23:

DISPATCH_ WRTACN,WRTADN;

where WRTACN and WRTADN are tasks that must be
records written in this source file. The RETURN_
command from figure 23 terminates execution of the
EXEC. Finally an EOR completes the record.

The WRTACN task record is then defined:

TASK:WRTACN;

This is one of the DISPATCH._ tasks. It is formed by
using the constructs of figures 8 and 17. It uses the
CALL_ command (fig. 23) to call target procedure DAC!
with ARGGROUP ACNG. This procedure writes its
argument to DAC one. A similar definition follows for
WRTADN to write ADN to DAC two.

The JOBDONE task is then defined. This task tests to
see if CORESIM.C.JOBDONE is not set and redoes the
test until it is. Note that the construct is from figures 8
and 18 where _TEST_ is the label name and IF, THEN,
ELSE is a conditional. Once the test passes, it uses the
ADVISE command (fig. 23):

ADVISE_ H.DPMESS: !

where H is an action code to stop the simulation and to
print out DPMESS, which is a message in the global data
files. This task can be disabled at run time by RTMPOS
to enable continuous simulation.

ACNG and ADNG are needed for the write-to-DAC
tasks. They are formed by using figures 8, 13, and 14. An
additional constant is defined as the AAC channel
number:

K1=I1{1];
where the ‘“.”’ indicates that it is a parameter, adjustable
at run time.

Argument groups are then defined for the read
procedure. The construct is shown in figures 8 and 14.

ADCVAR =S1/32[AN];
ADCCHN =11/32[K1];

For illustration the size of these argument groups is
greater than one. Size 32 indicates that 32 variables can
be read on 32 channels by adding items to these groups at
run time.

Channel 1 COMP.—The file name for the COMP
processor is DEV1:0.RTX.DATAPROC.SA. The file
(fig. 26(d)) consists of two EXEC’s, one TASK, and one
ARGGROUP. The constructs for the records are given in
figures 16 and 18 to 22.

The first executive is defined as

EXEC:MAINI0];

This EXEC is given the name MAIN with priority 0 (fig.
17), meaning it is a background EXEC (fig. 15). Its
purpose is to sample the values of variables at each cycle
of computation. The ENTER_ command (fig. 23) is used
to begin execution of GETDATA, which is a task to be
defined later. GETDATA will do the actual sampling and
transfer the data to RTMPOS.
The second executive

EXEC:BADADCI1];

is defined to service the ACTIVATE command used in
the PREP. The priority 1 indicates that this foreground
executive will have priority over the background
executive. This executive will halt the simulation if the
AN value read from an ADC is outside the MINAREA to
MAXAREA range. ADVISE_ prints a message from the
MESSAGE record in the global data file.
The GETDATA task is then defined:

TASK:GETDATA;

This task uses the CALL_ command (fig. 23) to call a
target procedure SAMPLE for the DATA ARGGROUP.
ADVISE_ with R.DATA says to read the argument
group data, which must be defined. ADVISE_R. must be
on a processor tied to the interactive bus. The DATA
ARGGROUP (defined by figs. 8 to 14) supports the
SAMPLE procedure. Note that the arguments are
defined with the argument specifications in figure 13.
Channel 2 PREP.—Channels 2 and 3 are used to
simulate the model equations. The channel 2 PREP
program file (fig. 26(e)) is called DEVI1:0.

41

DSCPREP.CORESIM.SA. It consists of one EXEC, one
CONSTANT, and one VARIABLE record. The
executive is defined as

EXEC:PRFCTNS [0];

It is a background executive. The two Boolean variables
PREPDONE and DUCTDONE are set false to indicate
that calculations have not been completed. Values for
PRC, CFLC, and CFFNA are then calculated. These
calculations are given in equations (22) to (24). The
PREPDONE variable is set true to indicate that the
calculations have been completed. WDNC is then
calculated from equation (25) (where ‘‘channel 3 name”’
is DUCTSIM). The variable DUCTDONE is set true to
indicate that the WDNC calculations have been
completed. The Boolean variables are defined, by figure
11, as

PREPDONE = B[TRUE/FALSE};
DUCTDONE = B[TRUE/FALSE]’

Channel 2 COMP.—The channel 2 COMP source file
is called DEV1:0.DSC.CORESIM.SA. The file (fig.
26(f)) consists of one EXEC, one CONSTANT, and one
VARIABLE record. The executive is defined as

EXEC:MAINSIM{0];

The EXEC is given the name MAINSIM with priority 0.
The variable JOBDONE is set to false to indicate that
calculations for this pass through the model have not
begun. PRC is then calculated from equation (26). If the
calculation overflows, the ADVISE command is used to
halt the simulation and give the CORESIMI message
from the global data file. CFFNB and ACNA are then
calculated from equations (27) and (28). A test is then
made to see if the channel 2 PREP Boolean variable
PREPDONE has been set true. If PREPDONE = TRUE,
no data transfer delay has been encountered. Otherwise

_ADVISE_M.COREMES3;

causes a printout that there is a delay. CFFN and ACN
are then calculated from equations (29) and (30). If
DUCTDONE is true, calculations can continue;
otherwise

ADVISE _M.COREMES4;

causes a printout of the COREMES4 message from the
global data file. The variables ADN and WDN are then
calculated from equations (31) and (32). Note that
DATAPROC is the name for channel 1. The variable
JOBDONE (referenced in channel 1) is set true to

42

indicate that the calculations have been completed. The
variable

JOBDONE = B[TRUE/FALSE];

is added to the variables for this processor.

Channel 3 PREP.—The channel 3 PREP source file
(fig. 26(g)) is called DEV1:0.DCSPREP.DUCTSIM.SA.
It consists of one EXEC, one CONSTANT, and one
VARIABLE record. The executive is defined as

EXEC:PRFCTNS[0];

This is a background executive. The Boolean variable
PREPDONE is set false to indicate that the calculations
have not been completed. PRD is calculated from
equation (33). The target Boolean variable,
OVERFLOW, is checked and, if true, command causes
the simulation to halt and CORMES2 from the global
data file is printed out. DFLC and DFFNA are calculated
from equations (34) to (35). PREPDONE is set true to
indicate that these calculations have been completed
for the channel 3 COMP check. From the construct in
figure 11

PREPDONE = B[TRUE/FALSE];

is added to the program variables.

Channel 3 COMP.—The channel 3 COMP program
file (fig. 26(h)) consists of three records: one EXEC, one
CONSTANT, and one VARIABLE. The name of the file
is DEV1:0.DSC.DUCTSIM.SA. The executive is defined
as

EXEC:COPROCES|0];

The EXEC name is COPRESS with priority 0. The
variables PRD, DFFNB, and WDNA are calculated from
equations (36) to (38). Then if PREPDONE is set true,
the calculations can continue; otherwise

ADVISE_.M.DUCTMESS;

causes the DUCTMESS from the global data file to be
printed. WDNB and DFFN are calculated from
equations (39) and (40).

In this example, it is assumed that the following
macros have been written and specified for the
appropriate data types in the target definition file:

FUNI multivariable function that provides
table lookup and interpolation
according to value of input variable

SQRT unary function that returns square root

of operand

Additionally, it is assumed that target library procedures
exist for the following:

READ reads specified ADC channels and stores
values in specified variables
SAMPLE assembles values of specified variables

into argument group format
DACI1, DAC2 writes values to DAC channels

The example source files are intended to illustrate many
aspects of RTMPL. However, it was impractical to
develop an example that illustrated all aspects. The
RTMPL utility is designed to aid the inexperienced user
in becoming proficient in the language (e.g., it contains a
multitude of warnings and error messages). True
competence will come only with hands-on programming
experience.

43

Chapter 7: Using the RTMPL Ultility

The RTMPL utility is designed to function under a
disk operating system (DOS). The DOS file and
input/output handlers are used to read and write the files
required by the utility. The utility provides one link in a
chain of DOS services necessary to bring a simulation
from concept to execution. It is assumed that the initial
simulation concept has been developed. That is,

(1) The equations describing the system to be simulated
have been partitioned and assigned to simulation
channels. The equations for each channel have been
partitioned (if required) and assigned to the COMP and
PREP.

(2) The necessary real-time data analysis and
input/output computations have been defined for the
RTX channel.

(3) The complete set of RTMPL source files has been
generated.

The source files are then processed by the RTMPL utility,
producing data-base files for use by the RTMPOS utility
and translated source files for the target assembler. The
listing files produced by the RTMPL and assembler
utilities and the results from their execution are available
to the user for documenting and refining the simulation
(if necessary).

The RTMPL utility is invoked by using the DOS
command

RTMPL(DEF), (LIST); Z = (SIZE)

This invocation is the form used in the VERSAdos disk
operating system. The user should refer to specific system
documentation if another DOS is used. Although
command formats may differ between installations, the
information required in the command line is generic (with
the possible exception of SIZE). DEF is the identification
of the simulation control file and LIST is the name of the
file designated to receive the listing. Both of these files
may be devices (the former being an input/output device,
such as the user’s terminal, and the latter an output
device, such as a printer). SIZE is a designation used by
the DOS in assigning memory segments for utility use.

The amount of memory required depends on the size of
the simulation and must be determined by the user.
Generally 500K bytes are sufficient for a typical
simulation.

After the command has been invoked, the utility will
read the simulation control file. If the file has been
assigned a device name (e.g., ‘‘#’’, representing the user’s
terminal), the utility will prompt the user for the required
information. The simulation control file, DUALSIM, for
the dual-nozzle example is given in figure 26(a), where the
entries correspond to the utility control segment structure
in figure 7 and the options listed in table I.

For the dual-nozzle example the RTMPL invocation

RTMPL DUALSIM, #PR; Z=100

will process the source files of figure 26 according to the
simulation control file, DUALSIM, and will provide a
listing file on the printer device (#PR). It reserves 100K
bytes of memory for RTMPL use. In this case the input
and output files are defaulted to the user’s terminal.

In the resulting user-terminal display (fig. 27) the
RTMPL header is followed by the RTMPL interpretation
of the simulation control file. The general format for
each line is

(PROMPT) = (TERMINAL ENTRY); (RETURN)****
{file entry)

If the user terminal, rather than the DUALSIM file, had
been identified as the simulation control file in the
RTMPL invocation, the display would pause after ‘="’
for user entry at the terminal. After each ‘“****”’, the
RTMPL interpretation of the entry is displayed. Any
detected entry errors are displayed after the entry.

After all entries have been processed, the total number
of errors detected is displayed. If any errors have been
detected, RTMPL processing is aborted. Otherwise
utility execution pauses at this point (for 15 sec) to allow
the user to review the simulation definition. If the user
does not intervene (e.g., to redefine the simulation), the
RTMPL utility processes the simulation source files.

RTHMFL TRANSLATOR VERSION 1.00
NASA LEWIS RESEARCH CENTE

R

FROCE
QFTIONE
KKK NONE

SIM. ID=

HR00K DUALNOZZ

GIM. DESCR=
FLXTEST®CASE
ST ORIGN=

NG RTMFL. SET UF FILE ...

SAM DEVOL=
ok DEVL
SIM. UNUM=
KKK (1
SIM .+ NCH==

Al « DUALNOZZ
ET FILE 1 (MaB000.<THx) =
HRAK MOEB0 00 « MACHCHAR
NO SETUF ERRORS ENCOUNTERED

Figure 27, - User terminal display (dual-nozzle
simulation control file),

As shown in figure 28, each major step in processing
the simulation source files is displayed on the terminal.
The global data file GLOBAL.DUALNOZZ is processed
first. At this point the specified listing file #PR is opened.
The global data file is then read. If errors are detected in
the file structure, RTMPL processing is aborted. Other-
wise each record in the global data file is syntactically
tested and transferred to the simulation data base being
established by the utility. All messages, tasks, and global
constants are thereby established for later reference by
the program files. If any syntactical errors are detected,
RTMPL processing is aborted. Otherwise the utility
processes each program source file. Again, file structure
is tested. If the structure is correct, the utility processes

120000
EVLI0000
1eonan, 0

DEVL L0 an
SLMULATITON

OATA BASE aND ASSEMBLER SOURCE FILECS) GENERATED

Figure 28, - User terminal display (dual-nozzle simulation processing).

the local data segment definitions (i.e., variables and
constants) and establishes these definitions in the data
base. It also sets up executive and task definitions in the
data base in preparation for statement translation. After
these actions have been taken for each program, and if no
errors have been detected, the utility rereads the
programs to process argument group definitions. Again,
the utility will abort processing if any errors are detected.
If no errors have been detected, the utility begins
processing the source statements contained in the
execution segment of each source program.

Statement processing consists of syntax and semantic
testing in conjunction with parsing of the expression
operations and operands. The parsed expression is then
translated into assembly language macros for inclusion in
the object file. If the SCAN option has been selected in
the control file, RTMPL processing is complete. If the
SCAN option has not been selected, and all statements
in all source files have been processed without error
(errors cause RTMPL to abort), the RTMPL object files
(assembler source and data base) are generated.

45

Chapter 8: RTMPL Listing

The RTMPL utility provides an extensive listing
designed to aid the user in developing accurate time-
optimized simulations. The listing also provides the
documentation necessary to track simulation develop-
ment and to allow engineering level interactive execution.
The listing is generated concurrently with the processing
of the simulation source files. Therefore, if the utility
aborts because of source file errors, sufficient
information should be available in the listing to aid in
correcting the errors.

The listing consists of two major parts—scan and
documentation. These parts are further divided into a
number of phases. The parts and phases are discussed
here in terms of their relationships to simulation
development and documentation. The discussion will use
the dual-nozzle example listing (appendix A) as
illustration. References to that listing include the listing
page number, which appears on the the header line on
each page. The header line also lists the simulation name
(DUALNOZZ) and the date and time of the listing
generation.

Scan Listing

This part of the listing provides the user with
information obtained during syntactic and semantic
verification of the simulation by the utility. It has two
phases: the scan of the data segments, and the scan of the
execution segments. The second phase is obtained only if
no errors are recorded in the first phase.

Listing pages 1 to 3 in appendix A show the results of
the dual-nozzle data segment scan. The global messages
and constants are scanned first. The listing of global
operational tasks is included to service future extensions
of RTMPL and should be ignored. After the global data
are scanned, the local constants and variables in each
program file are processed. (The execution segments
(executives and tasks) are also identified although their
statements are not processed until the next scan phase.)
Finally the argument groups in each source program are
processed.

46

The simulation example contains no errors. If errors
were detected, they would be listed in the appropriate
segment of the scan in a self-descriptive format. All
RTMPL error messages are listed in appendix B. The
general error and warning format is

(SOURCE DEFINITION)
(ERROR!) (MESSAGE) (specifics)

The offending source definition is listed verbatim. The
errors are then listed; the designation (ERROR!) is
followed by a message and specifics. The message
describes the offense in general terms. The specifics relate
the message to the specific part of the definition that is
causing the problem. For example, the constant
definition

CONSTANT:
ABC?DEF12=S1/0, 2 [2., O.L] EOR;

would produce the following error listing in the scan:
ABC?DEF12=S1/0, 2 [2., O.L.];

ERROR! NAME EXCEEDS 8 CHARACTERS;
ABC?DEF12

ERROR! NONALPHANUMERIC CHAR(S) IN
NAME: ABC?DEF12

ERROR! NUMBER TOO LARGE FOR SCALE
FACTOR: 2

ERROR! ILLEGAL CHAR IN INTEGER: L

In this example the constant name exceeds eight
characters and contains an nonalphanumeric character.
The scale factor (2°) is not large enough to scale the
specified value, 2. Finally the use of an alphabetic
character (L) in the integer value was flagged as an error.

For the sake of clarity some messages will contain
specifics within the message. For example,

ERROR! UNDEFINED FOREGROUND EXEC
(FOREEXEC) IN PROGRAM

where “FOREEXEC”’ and ‘“‘PROGRAM’’ would be
specific source program names. The second phase of
the scan is the processing of the statements that are in the
execution segment of each source program. This phase is
illustrated on listing pages 4 to 6. The results for each
executive and task in each source program are listed.
Again no errors were encountered in the example.
However, a multitude of warning messages were issued.
Their format is similar to that for error messages. All
RTMPL warnings are listed in appendix B.

Warnings are included in the listing to advise the user
of potential problems or to suggest possible changes to
the source programs that could reduce the time or
improve the accuracy of the computations. On listing
page 4, statement 2 of the GETAN executive causes the
warning

WARNING! AN MAY NOT BE COMPUTED YET
(PAST VALUE USED)

This occurs because the utility has not detected AN as the
result (i.e., appearing on the left) of a previous
equivalence statement. In this case, AN was derived by
using the target procedure READ and the user would
simply ignore the warning. Statement 9 in the GETAN
executive causes the following to be issued:

WARNING: CONSTANT RESCALING
ENCOUNTERED:K1P049 RSF=11 NSF=1

*** CREATED SC$1 FOR RESCALING OF K1P049

The nominal scale factor (NSF) is that assigned to a
variable or constant by the user in the data segment. The
required scale factor (RSF) is that required to make the
resulting scale factor of an expression compatible with
the required scale factor of the statement containing the
expression. This warning indicates that the constant
K1P049 requires a scale factor of 2! (scale factor on
ANF) instead of the specified 2!. No user action on this
warning is required since a system constant (SC$1) is
automatically created by the utility with the proper value
and scale factor. Note that a similar warning is issued for
statement 2 of the MAINSIM executive (listing page 5).
In this case, however, a system constant is not created by
the utility since PO has been defined as a global
parameter. The utility will scale as required to produce
the specified result. The user could, however, improve
the computational speed (eliminate an internal scaling

operation) by redefining the nominal scale factor
assigned to PO.

Statement 2 of the MAINSIM executive also produces
the warning

WARNING! CONSTANT PRECISION
ADJUSTMENT:PO RPRC =2 NPRC=1

The nominal precision (NPRC) is that assigned to a
variable or constant by the user in the data segment. The
required precision (RPRC) is that required to make the
resulting precision of an expression compatible with the
required scale factor of the statement containing the
expression. This warning is issued because the divide
macro, selected from the target definition files, requires a
double-precision operand but PO was defined as a single-
precision parameter. The utility will insert the proper
precision conversion macro. However, calculation time
will be reduced and perhaps accuracy will be improved if
the user redefines PO as a double-precision parameter.

A final illustration of RTMPL warnings is shown for
statement 23 of the MAINSIM executive.

WARNING! MULTIPLE ASSIGNMENT OF JOBDONE

is issued to indicate that the variable JOBDONE has
appeared more than once on the left side of an
equivalence (statement 1 also). In this case the dual
assignment was intentional and the warning would be
ignored.

Documentation Listing

Documentation, the second part of the listing, is
provided if RTMPL processing has not encountered
errors during scan. This part is made up of a number of
phases, depending on the number of source programs in
the simulation. They are

(1) General simulation information
(2) Global data segment

(3) Local data segment

(4) Executable statement segment

Phases 3 and 4 are repeated for each source program.
In the first phase (listing pages 7 to 9) information
contained in the control segment is listed and all files used
during utility operation are identified. The source, target,
and object files are listed. The object files consist of
assembler source files and data-base files. Each assembler
source file corresponds to an RTMPL program file. Two
types of data-base files are identified: global and
program specific. The latter are produced for each source
program. The number of records in each file is also

47

identified. These files need not concern the general user
since they are used at run time by the RTMPOS operating
system (see the section Data-Base Files).

The global data segment listing is shown on listing
pages 10 to 12. The operational messages are identified
and listed. The global constants are identified as well as
their data type and precision, values, scale factors, if any,
and whether or not the constant is parametric. If a
constant is multivalued, the values are tabulated below
the main identification table. The first value in the
multivalue table for PRXVALS is read as ‘“‘one value at
zero.”’

The last table in the global data segment listing
identifies the transfer maps for data transmission in the
simulation. The table specifies the source channel and
processor and the variable name and destination channel.
If a variable is only transferred to the other processor in
its channel, that is designated ‘‘local.”’ The table further
specifies the transfer address in the destination channel’s
external memory and the address where the transfer map
is stored. Finally it specifies the data path to be used to
implement the transfer.

The local data segment for the COMP in the
DATAPROC channel is given on listing pages 13 to 14.
Other local data segments are given on subsequent listing
pages to illustrate this listing phase. During this phase the
characteristics of local variables, external variables, local
constants, arguments, executives, and tasks are
tabulated.

Local variables are listed in terms of name, data type
and precision, values, and scale factor, if any (e.g., listing
page 16). Additionally the entry under the XREF header
will indicate ‘““YES’ if the variable is referenced in
another program. The entries under the PVAL header
indicate the number of past values associated with the
variable. Finally the absolute location of the variable is
given. Note that in the DATAPROC (COMP) listing no
user-defined variables are listed (listing page 13). Four
target state variables are listed. All target state variables
defined in the target definition files will always appear in
this table. As is true with all variables and constants, an
asterisk preceding the name indicates that the item is not
used in the execution segment of the simulation.

Variables external to the local program are identified in
terms of name and assigned location. The “$0”’
appendage to the name indicates that the current value is
used.

Local constants (listing page 16) are tabulated in a
format similar to that for global constants. In addition,
the size (arrayness) and assigned location of the constant
are provided. If a local constant is defined globally, it will
be so indicated in the value entry. If the value of a
constant is used as an immediate data operand only, it
will have no location assigned. In this case “‘IM-DATA’”’
will appear as its location entry.

48

Argument groups (listing page 16) are tabulated in
terms of name, data type and precision, location,
maximum size, number of programmed entries, and an
item list. The item list shows each entry to be initially
contained in the group. The list may of course be changed
at run time. For each entry the type and name are given.
The types XV, LV, and CN indicate external variable,
local variable, and constant, respectively.

Tasks (listing page 17) are tabulated in terms of name,
initial enable latch setting, reenterability, amount of
scratch pad memory required, and the locations of the
external variables required if the task is referenced in the
DISPATCH command.

Executives (listing page 17) are tabulated in terms of
name, priority level, service tasks, and scratch pad
memory requirements. Three types of scratch pad
memory (exec, task, macro) are defined. These need not
concern the user: they indicate the amount of temporary
memory required to compute the executive proper and its
service tasks and macros.

An execution segment listing is illustrated on listing
pages 18 and 19. It is the listing for the DATAPROC
PREP. The executable statements of each task and
executive in the program are interpretively listed to help
ensure that the utilities interpretation of the program
corresponds to the user’s intention. The general listing
format is

(STATEMENT NUMBER) (OBJECT LABEL)
(STATEMENT) (CALCULATION TIME)

The statement number is relative to its location in the task
or executive. The object label is either the statement label
assigned in the source or a sequential utility assignment.
Utility label assignment is sequential within a program (as
opposed to statement numbers, which are sequential
within a record). The utility label, S$N, would be
assigned to the nth statement in a program if it was not
labeled by the user. The statement, as listed, is an edited
version of the corresponding source file statement.
Unnecessary constant delimiters (semicolon, underscore,
exclamation point) are removed to enhance readability.
Furthermore statements within conditionals are indented
proportionally to the conditional level to aid in
identifying the structure of the program. Heavily nested
conditionals can be easily identified.

The calculation time listed to the right of the statement
is an estimate (in machine cycles) of how long it will take
to compute the statement on the target processor. This
number is obtained by adding the calculation time (from
target definition files) of each macro used in generating
the assembly source for the statement. To convert this
number to seconds, the user should multiply it by the
cycle time of the target processor. The “MAX PATH
EXECUTION TIME” appearing after the listing of the

statements is the number of cycles estimated for the
calculation executive or task when the maximum time
path is taken through the conditional statements. Note
that in the case of the GETAN. executive the user should
add the times for the library subroutine READ and the
tasks JOBDONE., WRTACN., and WRTADN. to get
the total estimated calculation time of GETAN.

Finally the execution segment phase of the listing lists
both the variables computed locally and transferred to
other programs and those computed externally and

referenced as operands in the local program. This listing
is handy when accounting for data transfer times in
partitioning the simulation.

The RTMPL listing file was designed to aid the user in
creating efficient simulation code. An attempt has been
made to have the utility generate meaningful messages to
facilitate debugging and program optimization. The
information in the listing file, coupled with that in
the RTMPL object files, provides a comprehensive
description of the simulation.

49

Chapter 9: RTMPL Object Files

If no errors are encountered during translation of the
RTMPL source files and the scan option is not selected,
the RTMPL utility will generate two sets of object
files—data-base files and assembler source files. The
data-base files describe all elements in the simulation.
These files are compatible with the RTMPOS operating
system and furnish it with the information necessary to
allow the user to interactively execute the simulation on
the target simulator. The assembler source files provide a
fully coded assembly language source program for each
processor in the simulation. These files must be
assembled on the target macro assembler and linked to
form load modules. The load modules are then available
for loading through RTMPOS at run time. This section
describes these files from a user’s standpoint. For
illustration the assembler source files for the
DATAPROC channel of the dual-nozzle simulation are
listed in appendix C. No illustrations of the data-base
files are provided since these are not text files. Note that
the format of the assembler source files depends on the
requirements of the target processor assembler as
specified in the target definition files. The files in
appendix C were generated for the MC68000 assembler.

Assembler Source Files

The assembler source files are text files and may be
listed by using the DOS. The resource name string used to
identify an assembler source file contains the following
components:

VOLUME ID object volume name specified in
simulation definition file
USER NUM user number specified in simulation

definition file

CATALOG ID ““OBJCOMP”’ or ‘‘OBJPREP”’
depending on whether the source
program is a COMP or PREP
program

50

FILE NAME logical name assigned to source
program channel
EXTENSION “‘SA,” indicating a text file

The assembler source file names for the dual-nozzle
simulation are

DEV1:0.0BJPREP.DATAPROC
DEV1:0.0BICOMP.DATAPROC
DEV1:0.0BJPREP.CORESIM
DEV1:0.0BJCOMP.CORESIM
DEVI1:0.0BJPREP.DUCTSIM
DEV1:0.0BJCOMP.DUCTSIM

The OBJCOMP.DATAPROC and OBJPREP.
DATAPROC files are listed in appendix C. The line
numbers given are for listing purposes only and they are
referenced in the following discussion of the example.

The assembler source files consist of statements and
comments. Comments are denoted by an asterisk in the
first character location in the line. The comments are
ignored by the assembler. Each statement is broken down
into the following fields:

LOCATION OPERATION OPERAND COMMENT

(8 characters) (8characters) (variable) (remainder)
Each field is separated by one or more space characters.
The location field contains mnemonic descriptors of the
statement that are used for memory referencing. If
referencing is not required, this field is filled with spaces.
The operation field contains a macro name. The target
code defined for that name will be substituted by the
assembler for that name in the target macro file. The
macro names used in the dual-nozzle simulation are
defined in table VI. The available macros would be
defined in the systems manual generated for the target
simulator during RTMPL installation. The operand field
contains the operands to be used by the macro. Multiple

TABLE VI.—DESCRIPTION OF MACROS USED IN

DUAL-NOZZLE SIMULATION

Macro Description
ACTIVATS | Implement ACTIVATE
ADDS$SIRI Add immediate data to register (DTP =S1)
ADVISEHS | Implement ADVISE.H
ADVISEMS | Implement ADVISE.M
ADVISERS Implement ADVISE.R
BACKEXEC | Executive initialization
CALLS Implement CALL
CVPS$SI12 Convert precision (1—2)
CVP$S21 Convert precision (2—1)
DCS$ Define constant
DISPATCS Implement DISPATCH
DIV$SIRM | Divide register by memory (DTF =S1)
DIV$S2RM | Divide register by memory (DTP =S2)
DLS Define 32-bit word
DNS$ Define name
DS$ Reserve storage
EQUS Define address relationships to firmware
ENTERS Implement ENTER
EXITS Jump to specified argument
FUNI Multivariable function
FOREEXEC | Executive initialization
HLDS$S1 Store value for comparison
INCLUDES | Specify macro file
JFSOVERF | Jump if no overflow
JGTHS$S1 Compare and jump if greater than
JNEQ$S1 Compare and jump if not equal
JNGTSS1 Compare and jump if not greater than
JNLTS$S1 Compare and jump if not less than
JTRS Jump if expression true
LDI$S1 Load register with immediate data
LDMS$BV Load register from memory (DTP =B)
LDMS$S1 Load register from memory (DTP =S1)
MULS$S2RI | Multiply register by immediate data (DTP =S2)
MUL$S2RM | Multiply register by memory (DTP = S2)
MULS$S2RR | Multiply register by register (DTP =S2)
NOT$BVR Logical NOT
ORG$ Define load start address
REDO$ Implement REDO
RETURNSE | Return from background executive
RETURNSI | Return from foreground executive
RETURNST | Return from task
SCL3$SIL Scale register left (DTP =S1)
SCLS$SIR Scale register right (DTP =S1)
SCLS$S2L Scale register left (DTP =S82)
SCL$S2R Scale register right (DTP =S2)
SLV$St Store register in local memory
SSP$S1 Store register in scratch pad memory
STV$BV Send value via local bus (DTP =BV)
STVS$SI Send value via local bus (DTP =S1)
STX$BV Send value via external bus (DTP = BV)
STX$S1 Send value via external bus (DTP =S1)
SUBS$SI1IR Subtract immediate data from register (DTP =S1)
SUB$SIRM | Subtract memory from register (DTP =S1)
SUB$SIRR | Subtract memory from register (DTP =S2)
SUB$S2RR | Subtract memory from register (DTP =S2)
SQRT Unary function
TSTXVAS Test currency from alternate processor
TSTXVLS Test currency from local bus
XREF External reference

operands are separated by commas. In the example
listings, ‘““Dn’’ denotes the nth data register and ‘“‘An”’
denotes the nth address register. Register mnemonics are
target dependent. The comment field is not processed by
the assembler and should be self-explanatory.

Each assembler source file is arranged as follows:

Required target macros (e.g., lines 9 to 176,
OBJCOMP.DATAPROC)

Control and initialization (e.g., lines 177 to 181,
OBJCOMP.DATAPROC)

Foreground executive maps (e.g., lines 182 to 203,
OBJCOMP.DATAPROC)

Entry addresses (e.g.,
OBJCOMP.DATAPROC)

Simulation transfer maps (e.g., lines 211 to 273,
OBICOMP.DATAPROC)

lines 204 to 210,

Transfer memory (e.g., lines 274 to 362,
OBJCOMP.DATAPROC)
Local variables (e.g., lines 502 to 509,

OBJPREP.DATAPROC)
Program constants
OBJPREP.DATAPROC)

(e.g., lines 510 to 513,

Dispatch task list (e.g., lines 514 to 518,
OBJPREP.DATAPROC)
Argument groups (e.g., lines 519 to 572,
OBJPREP.DATAPROC)
Executable segment (e.g., lines 573 to 641,
OBJPREP.DATAPROC)
Target procedures (e.g., lines 642 to 647,

OBJPREP.DATAPROC)
The following paragraphs describe these components of
the assembler source fiie.

The target macros define the assembly language
equivalents for all RTMPL-generated macros in the
program. These include assembly instruction macros
such as INITIAL, DATASEG, and DATAEND (lines 9
to 52, OBJCOMP.DATAPROC), RTMPL data transfer
operation and command macros (lines 53 to 151,
OBJCOMP.DATAPROC), and target library procedures
referenced through the use of the CALL command or
internally by other macros (lines 152 to 175,
OBJCOMP.DATAPROC). The structure and content of

these macros are arbitrarily set up by systems
programmers to meet specific target simulator
requirements.

The first statements to be assembled in every RTMPL-
generated program are the control and initialization
statements (INITIAL$ and DATASEGS). These
statements set up the program for assembly by defining
absolute interfaces with the simulator hardware and
resident software and by furnishing any other
initialization required by the target assembler.

The foreground executive maps are used by the
processor’s firmware to service the ACTIVATE

51

command that appears in the program for the alternate
processor in the channel. The first location is reserved to
hold the entry address of the active executive. All
foreground executives are then listed in decreasing order
of priority. For each, the entry address is followed by a
busy flag and a pending flag. The busy flag is set by the
firmware if that executive is being executed. The pending
flag is set if the execution of that executive is being
delayed due to the execution of a higher priority
foreground executive.

The entry address part of the program contains the
entry addresses of all executives and tasks in the
program. They are used for various operating system
functions at run time.

The simulation transfer maps are used for
interprocessor data transmission by the STV$/STX$
macros. They list the destination channels for each
transfer variable in the simulation. The format is

Destination channel codes (none, 0, 4, 8, ...)
Expansion (—2)
End of map (- 1)

A destination channel code is included for every channel
requiring reception of the variable (‘‘0’’ representing the
first channel in the simulation, ‘‘4’’ representing the
second, etc.). Since the value of a transfer variable is
always stored in the transfer and external memory of the
local channel, no destination code is required for the
local channel. Expansion (-2) is included to allow the
addition of another destination channel to the map at run
time. The feature supports the run-time manipulation of
argument group entries. The end of the map is signified
by —1.

The transfer memory allocation details the variables
assigned to transfer and external memory. This allocation
as well as the transfer maps is global. Therefore the
allocations are identical in all assembler source files in the
simulation. Each transfer memory allocation consists of
a ““CALC FLAG”’ (set appropriately by the firmware to
indicate value currency), an initial-value assignment, and
the variable’s transfer map address. These allocations are
used by the TSTXVS$/TSTXVL$/TSTXVAS$ macros to
test the currency of data transfer.

Local variable assignment details the memory
assignments of all program variables not assigned to
either transfer memory or external memory. Program
constant assignment details the memory assignments of
all program constants. The dispatch task list provides the
argument for the DISPATCH command and lists the
tasks to be dispatched.

The argument group is represented in the assembler
source file by a translation of the ARGGROUP
construct. It contains the information supplied by the
user in the RTMPL source program formatted into a data
record compatible with both the argument requirements

52

of target library procedures and the data-handling
requirements of the RTMPOS operating system. In the
OBJPREP.DATAPROC listing, lines 523 to 526 reserve
memory for record identification information supplied
by RTMPOS. This information identifies the record
when it is downloaded into a run-time-generated disk file.
It contains, among other things, the name of the
argument group and the channel. Line 527 specifies the
maximum number of items that can be contained in the
group. Lines 528 and 529 are for RTMPOS record-
keeping. Line 530 specifies the current number of items
contained in the group. Line 531 specifies the number of
words needed for a value of a group item. Following this
are the addresses of all items presently contained in the
group and memory reservation for the addresses of items
that may be added at run time. Finally memory is
reserved for values of each item in the group (line 533).
These values are determined by the calling procedure
using the group as an argument.

Each target library procedure, invoked by the CALL
command, that uses the group as an argument may
handle the information described differently. For
example, the read procedure invoked in line 579 uses the
item addresses in ADCCHN to obtain ADC channel
numbers and the addresses in ADCVAR to determine
where the data are stored. This procedure does not use
the memory reserved for values at all. The sample
procedure invoked in OBJCOMP.DATAPROC obtains
values from the specified items’ addresses and stores
them in the value locations reserved within the data
argument group. It is therefore necessary that the user
understand the action of all target library procedures
invoked.

The executable code segment contains the sequence of
assembly language macros corresponding to the
executable statements of the source file. This code is
separated into executives and tasks as specified in the
source file. Each block of code contains overhead
information necessary for execution. Executive overhead
is as follows:

(1) Macro scratch pad allocation—memory reserved
for scratch pad required internally by macros resident in
either the executive or its service tasks

(2) Task scratch pad allocation—memory reserved for
scratch pad required for translation of service tasks
(reserving task scratch pad here allows tasks to be
reenterable)

(3) Executive scratch pad allocation—memory reserved
for scratch pad required for translation of the executive

(4) Entry overhead—memory reserved for register and
miscellaneous storage necessary to enter and return from
the executive

Memory is allocated by using one of the housekeeping
macros BACKEXEC or FOREEXEC.

An example of task overhead is given in lines 415 to
425 of OBJCOMP.DATAPROC. First, the addresses of
all external variables referenced in the task are listed,
followed by the number of these variables. These
overhead items are used in executing task DISPATCH
command. The task overhead continues with the location
of the task enable and complete latches (see ENABLE
and DISABLE commands). Finally, a task entry
overhead of two memory words is reserved and assigned
the task name. Task execution begins at line 412.

Finally, as shown in lines 645 to 647 of
OBJPREP.DATAPROC, all referenced library
procedures are invoked by RTMPL. This causes the
procedures to be attached to the end of the program and
simplifies the program linking process.

Note that the example programs shown in appendix C
were targeted to the MC68000 macro assembler. For
other processors the basic program structure would be
the same, but the macro content could be significantly
different.

Data-Base Files

Data-base files are not text files and therefore may not
be listed by using a standard DOS list command. They
are files of Pascal records. Their format should be of no
concern to the user (for more information, see ref. 3).
Both RTMPL and RTMPOS contain facilities for listing
the information contained in the data-base files in a
usable form. All pertinent data-base information is given
in the RTMPL listing.

The data-base files generated for the dual-nozzle
simulation are identified on listing pages 7 to 9 in
appendix A. The catalog name (e.g., SIMDEF) indicates
the type of information contained in the file. Global
data-base files contain information pertaining to the
simulation as a whole. Program-specific data-base files
contain information pertaining to a particular program.

Six global data-base files may be generated for a
simulation. The SIMDETF file always contains one record
and roughly corresponds to the simulation control
segment. The MESSDEF file contains the global
messages. The VALUEDEF file contains all values
referenced in the simulation. The GLCDEF file contains
the global constants. The OSTSKDEF file is not currently
used but is reserved for RTMPL expansion. The
PRGDEEF file defines each program in the simulation in
general terms. Note that, in the listing, if the number of
records in a file is 0, the file was not generated for the
simulation.

Up to eight program-specific data-base files may be
generated for each program in a simulation. LVAR,
XVAR, CNST, and AGRP files define the program’s
local variables, external variables, constants, and
argument groups, respectively. The ALST file contains
the items assigned to each argument group. The EXEC
and TASK files provide pertinent information about the
program’s execution segment. The TKLB file is used to
support the DISPATCH command.

The contents of these files may be modified to some
extent by the user, through RTMPOS, to form a run-time
data base. Copies of the run-time data base may be saved
and used for different simulation starting conditions and
to support simulation documentation (ref. 3).

53

Chapter 10: Concluding Remarks

The real-time multiprocessor programming language
(RTMPL) combines the efficiency and versatility of
assembly language programming with the advantages of
having an easily understood, engineering-oriented, high-
level programming language. RTMPL is intended for
time-critical applications (e.g., real-time simulation) and
is suitable for programming the following simulator
configurations:

1. Multiprocessors with dual-bus communication

2. Multiprocessors with single-bus communication

3. Multiprocessors with shared-memory communication
4. Single processor

RTMPL is a structured language that provides many
program-development aids to help in producing time-
efficient code.

The language is targetable, not only to various
simulator configurations, but also to various processors
and macroassemblers. A targeting utility is available to
automate the targeting procedures. The power of a
macro-based language is determined by the assembly
language macros written to support it. Multivariable and
unary functions, firmware interfacing commands, and
target library procedures have been incorporated in
RTMPL. Other macros may be incorporated within the
language structure to meet specific installation
requirements. Since RTMPL supports both fixed-point
(scaled fraction) and floating-point data types,
operations on these data types can be incorporated (or
not) to meet installation needs. For example, if a
simulator includes an efficient floating-point processor,
macros to support fixed-point operations might not be
needed at all.

The versatile targeting capability of RTMPL eliminates
the need for designing special compilers or translators. If
a new processor and its companion macroassembler fall
within the targeting restrictions of the language, RTMPL
can easily be targeted to this processor, thereby saving
many hours of software development.

54

RTMPL, coupled with its companion operating
system, RTMPOS, provides for interactive execution of
multiprocessor simulators at a level comparable to analog
computers. Data-base files are generated by the RTMPL
utility for use by RTMPOS. This provides an extensive
engineering-level interface between the users and the
simulation at run time. Listings are provided to establish
the dialog and to summarize and document the
characteristics of the simulation.

As is the case with initial versions of any language,
there is room for improvement in RTMPL. At this time
the following enhancements are contemplated:

1. Reducing and streamlining the specifications of data
type and precision and scale factor required for defining
variables and constants

2. Allowing the use of direct-value specification within
expressions

3. Extending the EXECUTE command to accept
target-specified arguments

4. Reducing RTMPL processing time by reducing the
number of target definition file reads

Since RTMPL is a research language, the implementation
of these improvements will depend on user acceptance
and response.

The author and other members of the staff at the Lewis
Research Center have a continuing interest in improving
the cost effectiveness and utilization of real-time
simulation. We hope that RTMPL and other RTMPS
developments will provide a vehicle for constructive
discussion and development of simulation techniques and
standardizations to meet these goals.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, January 14, 1985

Appendix A—Listing for Dual-Nozzle Simulation

RTMFL LISTING ¢ DUALNOZZ 11/27/84 101283152 FAGE 1

X
SCAN — SOURCE FORMATy DATA SEGMENTS *
e + «DUALNOZZ *
*

*

M K X ¥ X X

K XK X XK X X X X X X X X X X X X X X %X X

GLOBAL OFERATIONAL MESSAGES! DEVLIID000.GLOEAL .DUALNOZZ.SA

++ o8 MESSAGE(S)
v+ 40 ERRORC(S)

GLOEAL OFPERATIONAL TASKS: DEVI110000.GLOEBAL .DUALNOZZ .54

o+ s NONE ENCOUNTERED

GLOEBAL CONSTANTS: DEV1:0000.GLOBAL .DUALNOZZ .SA

++410 CONSTANT(S)
«e+ 0 ERROR(S)

FROGRAM CONSTANTS! DEVL:0000.RTX.DATAFROC.SA

+ + o NONE ENCOUNTERED

FROGRAM VARTABLESS: DEV1:0000.RTX.DATAFROC.SA

+++ NONE ENCOUNTERED

FROGRAM EXECUTIVES! DEV1:0000.RTX.DATAFROC, SA

v+ 42 EXECUTIVE(S)
so o0 ERRORC(S)

FROGRAM TASKS! DEV1:0000.RTX.DATAFROC, SA

+eel TABK(S)
+ 0o) ERROR(S)

FROGRAM CONSTANTS: DEV1:0000.RTXFREF .DATAFROC.SA

e ve&6 CONSTANT(S)
+++ 0 ERRORC(S)

FROGRAM VARIABLES!: DEV1:0000.RTXFREF.DATAFROC,.SA

+ 004 VARTIAEBLE(S)
sosll ERRORC(S)

FROGRAM EXECUTIVESS DEV1:0000,RTXFREF.DATAFROC.S5A

s ool EXECUTIVE(S)
vae) ERROR(S)

FROGRAM TASKS: DEV1I0000.RTXFREF.DATAFROC. S

55

56

RTMPL LISTING ¢ DUALNQOZZ 11/27/84 10128152

000\3 TA
+ e 0 E.F\F\C)F\(

FRObRAM CON%TANTQ@ DFU].UOOO D C COREQIM.QA

v e 0 \4-‘ CON&TANT (S)
se ol ERROR(S)

FROGRAM UARIABLES: DEUl!OOOO.DSC.CORESIM.SA
o+ e UARIABLE(S)
+e e ERRORC(S)

FROCRAM FXLCUTIVES’ DEV10000.DSC.CORESTM. SA

...1 EXECUTLUE(S)
+ e+ 0 ERRORC(S)

FROGRAM TASKS: DFUi 0000 DSC. CORFSIH SA

+ oo NONE FNCUUNTFRFD

FROGRAM CONSTANTS S DFUI’GOUO DSCFREF . CORFQIH SA

s 04 CONSTANT(S)
+ o0 ERRORC(S)

FROGRAM VARTABLESS DEV1I0000.DSCPREF . CORESIM, 5A

» o o6 VARTAELE(S)
e oo 0 ERRORC(S)

FROGRAM EXECUTIVES: DEV1:0000.DSCFREF .CORESIM.SA

e v ol EXECUTIVEC(S)
oo o) ERRORC(S)

FROGRAM TASKS: DEV1:0000.DSCPREF.CORESIM.SA

+ oo NONE ENCOUNT&&ED

Phﬂ(RﬁM FON“TANTQ: DFU]'OOOO DsC. DUCTOIM SN

...4 CONSTANT(%)
o+« 0 ERRORC(S)

FROCRAM UARIGFLFQ. DEV10000.DSC.DUCTSIM, SA

...5 VARIABLE(S)
ve o0 ERRORCSD

FROGRAM FXECUTIUF°° DFUl 0000. DS(.DUCT 1MoSA

v+ o0l EXECUTIVE(S)
+ o+) ERROR(S)

FAGE 2

RTMPL. LISTING ¢ DUALNOZZ 11/27/84 10128152 FAGE 3

FROGRAM TASKS: DEV1I0000.DSC.DUCTSIM.SA

+ o+ NONE ENCOUNTERED

FROGRAM CONSTANTSE DEVLS 0000 DS CPREP DUCT 3IMa SA

+ ¢+ 3 CONSTANT(S)
oo+ ERROR(S)

FROGRAH UARIhELEq. DEV1:0000.DSCHRREF .DUCTSIM. SA

...4 UARIABLE(S)
+ o2 0 ERRORCS)

FROGRAM EXECUTIVES?: DEV1I0000.DSCPREF .DUCTSIM.SA

veal EXECUTIUE(S)
+ o0 ERRORCS)

FROGRAM TASKS: DEV1:0000,DSCFREF.DUCTSIM.SA

+ o+ NONE ENCOUNTERED

FROGRAM ARGUMENT GROUFS: DEV1I0000.RTX.DATAFROC.SA

+ ¢+ +1 ARGUMENT GROUF(S)
v+ 0 ERROR(S)

FROGRAM ARGUMENT GROUFS: DEV1:0000.RTXFREF.DATAFROC.SA

+ o+ ARGUMENT GROUF(S)
e+ ERROR(S)

FROGRAM ARGUMENT CGROUFS: DEV1ID000.DSC.CORESIM.SA

s oo NONE ENCOUNTERED

FROGRAM ARGUMENT GROUFS! DEVLI0000,.DSCPREF.CORESIM, SA

+ v+ NONE ENCOUNTERED

FROGRAM ARGUMENT GROUFS?S DEU1 0000.DSC. DUCTPIM SA

‘tee NONE ENCOUNTERED

FROGRAM ARGUMENT GROUFS? DFU] 0000 .DSCFREF . DUCTSIM. 5A

o o+ NONE ENCOUNTERED

57

RTMFL LISTING ¢ DUALNOZZ 11/27/84 101283152 FAGE 4

KoK XK XK XK K K K K K XK KK KX K XK

X

X x
X SCAN ~ EXECUTAELE SEGMENTS *
x *
X X

WX K K M K K K XK K XK K XK XK X X

MAIN, EXECUTIVE: DEV1I0000.RTX.DATAFROC.5A

«v 2 STATEMENT(S)
+ o+ 0 ERROR(S)

PADQDC. EXFCUTTUE' DLUl 0000.RTX. DATAPRU(.GA

co ot STATEMENT (S)
v oo 0 ERRORC(S)

GETDATA. TASK: DEVLI0000.RTX. DhTAFROf.qh

s o033 STATEMENT(S)
ves) ERROR(S)

GETAN. EXECUTIVES: DEVI1Z 0000 hTXFREF DATAFROL.Q

2 AN=AN+HZS
WARNING! AN MAY NOT EBE COMFUTED YET (PAST VALUE USED)

9 HIANF=K1F049-K1FP622MAXAN}
WARNING! CONSTANT RESCALING ENCOUNTEREDIK1F049 RSGF=11 N&F=
xxx CREATED SC%1 FOR RESCALING OF K1F049

veal? “TATFMENT(&)
o0 ¢ 0 LF\F\OF\(

WRTACN. TASK: DEV1:0000.RTXFREF .DATAFROC. 5A

oo STATEMENT(S)
v oo 0 ERRORCED

NHIADN. TASK! DEV1II0000 . .RTXPREF .DATA&RU(.SA

veed STATEMENT(S)
v e o0 ERRORC(S)

JOEDONE . TASKD DEVIS 0000 RTXFREF . DATAFROC.

v et STATEMENT (S)
v+ 00 ERRORC(S)

MAINGSIM. EXECUTIVE: DEV1:10000.DSC.CORESIM.SA

RTMPL LISTING ¢ DUALNOZZ 11/27/84 101283152 FAGE 5

2 FPRC=FO/FCN?

WARNING! CONSTANT FRECISION ADJUSTMENT (F0 RERC=2 NFRC=1

WARNING! CONSTANT RESCALING ENCOUNTERED PO RGF=8 NSF=6
5 IFFNE=SART (K1FP-FUNLLFPRXVALS s FRNVALSy XTOZBS7 y PRC Y §

WARNING! CONSTANT RESCALING ENCOUNTERED IHILF RSF=2 NSF=1

xxx CREATED SC%1 FOR RESCALING (F Ki1F
6 ACNA=HONRXWONXGART(TON) §
WARNING! CONSTANT RESCALING ENCOUNTEREDSTCN REF=12 NSF=13
10 THENGFFN=KF25883
WARNING ! CONSTANT RESCALING ENCOUNTERED (HF2588 ROF=2 N&F=-1
*xx CREATED SC$2 FOR RESCALING OF KF2538
15 THENEACN=ACNA/FONXFFNX P FLCS

WARNING! VARTIAELE FRECISTON aADJUSTMENT (ACNA RFRC=2 NPRC=1

WARNING! VARIAEBLE RESCALING ENCOUNTERED $ACNA ROF=20 NSF=11
16 ELSE¢ACN=ZERQ;

WARNING! CONSTANT RESCALING ENCOUNTEREDIZEROQ RSF=10 NSF=0

*xx CREATED SC$3 FOR RESCALING OF ZERD
20 THENCADN=ZERQS

WARNING! CONSTANT RESCALING ENCOUNTEREDIZERO REF=10 NGF=0Q

*¥K USTING SC43 FOR RESCALING OF ZERO
21 ELSECADN=DATAFROC..F . ANF-ACNS

WARNING! VARIABLE RESCALING ENCOUNTEREDACUN REGF=11 NSF=10
23 JOBEDONE=TRUE$

WARNING! MULTIFLE ASSIGNMENTS OF JOBEDONE

v o+ 24 STATEMENT (S)
s+ o0 ERROR{(S)

FRFCTNS., EXECUTIVES: DEV1:0000,.DSCFREF.CORESIM.S5A

3 FRC=FO/PCNS

WARNING ! CONSTANT FRECISION ADJUSTMENT (FO RFRC=2 NFRC=1
WARNING ! CONSTANT RESCALING ENCOUNTERED (PO REF =8 NSF=6

8 THENGFLC=KFE25:
WARNING! CONSTANT RESCALING ENCOUNTERED (KF82G RSF=1 NSF=0
ik CREATED SC%1 FOR RESCALING OF KF825
10 PREFDONE=TRUES;
WARNING! MULTIFLE ASSIGNMENTS OF FREFDONE
12 DUCTDONE=TRUE
WARNING! MULTIFLE ASSIGNMENTS OF DUCTDONE

+ o+ 13 STATEMENT(S)
+++0 ERROR(S)

COFROCE., EXECUTIVE: DEV1:0000.DSC.DUCTSIM.SA

1 FRD=FO/FDN}

WARNING! CONSTANT FRECISION ADJUSTMENT (FO RFRC=2 NFRC=1

WARNING! CONSTANT RESCALING ENCOUNTERED:IFQ REF=8 N&F=&
4 IFFNE=SQRT (K1F-FUN1L FRXVAL.Sy FRNVALSy XTOZ2857 s FRD 1) 3

WARNING! CONSTANT RESCALING ENCOUNTERED:!K1F REF=2 NSF=1

xxx CREATED SC41 FOR RESCALING OF K1F
S WDNA=KDNXSQRT (TDN) 3

WARNING! CONSTANT RESCALING ENCOUNTERED:TDN RSF=12 NGF=13
P THEN¢FFN=KF25883

59

RTMFL. LISTING ¢ DUALNOZZ 11/727/84 101283152

WARNING ! CONSTANT RESCALING ENCOUNTERED (KF2586
*xX CREATED SC$2 FOR RESCALING OF KF2588

+ 0412 STATEMENT(S)
s e o0 ERRORC(S)

FREFCTNS . EXECUTIVE: DEVLII0000.DSCRREFDUCTSIM, 54

2 FRD=FO/FDN?
WARNING ! CONSTANT FPRECISION ADJUSTMENT tFO
WARNING! CONSTANT RESCALING ENCOUNTERED PO

7 THENCFILLC=KF8205 3
WARNING T CONSTANT RESCALING ENCOUNTERED (HF825
xxx CREATED SC$1 FOR RESTALING OF KFPa295

9 PFREPDONE=TRUE
WARNING ! MULTIPLE ASSIGNMENTS OF FREFPDONE

ve o l0 STATEMENT(S)
oo o0 ERRORCED

FAGE &
RGF=2 NSF=0

RFRC=2 NFRC=1
RSEF=8 N8F=6

RSF=1 NSF=0

RTMPL LISTING ¢ DUALNOZZ 11/27/64 10

L1 4
Ry
s
Lo d
e
R

KK K XK XK X X XK X X X X X X X X X

o ¢ + DUALNOZZ

LEEEEE

X

*

GENERAL SITMULATION INFORMATION *
X

»

*

X X X X X X X X X X X X X X X X X

DESCRIFTION ¢ RTMPL TEST CASE
ORIGINATORS NAME § DALE J. ARFAST
USER NUMEBER ¢ 0000

SIMULATOR CONFIGURATION ¢ DUAL
NUMEER OF CHANNELS IN STMULATION ¢ 3

RTMPL SOURCE FILES

K M KK K K XK NCOK 30K XOK
DEV1:0000.RTX.DATAFROC. SA
DEV1I0000 .RTXFREF .DATAFROC .SA
DEV1:0000.DSC.CORESTM,. B5A
DEVL110000.,DSCPRER, CORESIM. S5A
DEV120000.DSC,DUCTSIM,. SA
DEV1I0000.DECFREF DUCTSIM,. SA

GLOBAL. SOURCE FILE
KK KK KKK SR KK K KK KK

DEV10000.GLOEAL .DUALNOZZ, SA

TARGET FILES

SACOK IO KK K XOK
DEV1 0000, MOB000 . MACHCHAR, TD
DEV1:0000.M68000. TGTSFCCHM.TD
DEVLI000D.M&HB000. TCTFRCDR.TD
DEV1:0000.M468000.TCGTOFDEF . TD
DEV10000.M48000. TCTHKDEF . TD
DEV1:0000.M68000. TGTSTDEF . TD

ASSEMELER SOURCE FILES

R ACK K 0K K K 3K 3K K K 0K 3K XK
DEV1:0000.0BJCOMF.DATAFROC . SA
DEV1:0000.0BJPREF .DATAFROC . SA
DEV1:0000.0BJCOMF . CORESIM,. SA
DEV1:0000.,0BJFREF . CORESIM. SA
DEV1: 0000 .0BJCOMF.DUCTSIM, SA
DEV1$0000.0BJPREF..DUCTSIM, SA

GLOEAL DATA BEASE FILES
HOK K AR 0K KKK KK K 30K 3K KK

RESOURCE NAME STRING

DEV130000.SIMDEF .DUALNOZZ . DE
DEV1:0000 . MESSDEF . DUALNOZZ .DE
DEV1:0000.VALUEDEF .DUALNOZZ . DE
DEV1:0000.,GLCDEF .DUALNOZZ . DE
DEV1:0000,08TSKDEF .DUALNOZZ. DE
DEV1:0000.,FRGDEF . DUALNOZZ . DE

& OF RECORDS

FAGE

7

61

RTMPL LTSETING ¢ DUALNOZZ 11/727/84 1028152 FAGE 8

FROGRAM SPECIFIC DATA-BASE FILESS DATAFROC (COME)
RESOURCE. NAME GTRING # OF RECORDS
DEVL 20000 .1.UAR . DATAFROC . DE 4
DEVL 0000 « XVAR ., DATAFPROC + DE 7
DEV1$0000.CNST,DATAFROC JDE 1
DEYVL 0000 . AGRF , DATAFROC . DE: 1
DEVLI0000.ALST . DATAFROC . DE 16
DEV1:0000.EXEC. DATAFROC «DE v
DEVL 0000, TASK, DATAFROC . DE 1
DEVLS 0000, THLE, DATAFROC . DE: 1

FROGRAM SPECTFIC DATA-BAGE FILES! DATAFROC (FREFD)
SR K K 3K K K K K 3K K K 4 K K K K K 3K KK KKK K SR KOK HOK SR K,

RE”UURPF NAME SYhINL # HF RECORDS

DLUI‘OOOU LUARFhfP DATAPHUP.DF &
DEV1: 0000 .. XVARFREF . DATAFROC .DE 3
DEVLI D000 .. CNSTFREF, DATAFROC . DE i
DEVLI0000.AGRFFRERF . DATAFROC , DE 4
DEVIIB0D0 .. ALSTFREF . DATAFROC . DE 4é
DEV1I0600..EXECFREF . DATAFROC DE 1
DEVLI 0000 . TASKFRER DATAFROC . DE &1
DEV1: 0000, THKLEFREF .DATAFROC . DE 3
FROGRAM SPFECTFIC DATA-BASE FILES!D CORESIM (COMF

hrSOUhCL NAME. STRING # OF hk(UhD‘

DFU1'0000 |Uﬁh.FOI 12
DEVLIN000 . XVAR . COREST &
DEVII0O0,CNST . CORESTM. Di2 17
DEV1I0000 . AGRF .. CORESTM « DE 0
DEVLI0000..ALST . CO! TMDE 0
DEV1I0000,EXEC, CORESTM.DE 1
DEVIIO000. TASK . CORESIM. DE]

DEVIIO000 .. TKLE . CORESTM. DE Q

RTHPL LISTING ¢ DUALNOZZ 1L1/27/784 1012023152 FPAGE 9

FROGRAM SFECIFIC DATA-BASE FILES! CORESIM (FREF)
K K K 3K KKK K HCK 3K K K K K K K DI K K SHOK 3K K SR 3K 3K 3K K 9K OK 3¢
RESOURCE NAME STRING # OF RFCDRD
DFU120000 LUAR[RFF LOR[SIM DE 10
DEVLI0000 . XVARFRERF . CORESTHM. DE 1
DEVIIN000.CNSTFREF.CORESTM, DE 13

DEVLIN000 AGRFFPRERP . CORESTM,. DR 0

DEVLI0000.ALS . CORESTIM. DE 0
DEVLI 0000 EXECFRERF . CORESYTM, DE 1
DEV1:0000. TASHFRERF . CORESTIM,. DE |
DEVLI0000., TKLEFRER , CORESTIM. DE 0

FROGRAM SPECTFIC DATA-BASE FILES! DUCTSIM (COMP)
R KK KK 3K KK 3R K K KK K KK K SKOK K K K KK SIOK 3K K K K KK K

RESOURCE NAME STRING L OF RECURD"
DEV110000.LVAR.DUCTSIM, DE Q9
DEVLIN000 .. XVAR.DUCTSIM, DE: 2
DEV1I0000.CNST.DUCTSIM,. DE 12
DEVLI0000..AGRF. DUCTSIM, DE 0
DEV1:0000.ALST.DUCTSIM. DE 0
DEV1I0000.EXEC.DUCTSIM. DE 1
DEV1I0000.TASK.DUCTSIM,. DE 0
DEVII0000. THLE.DUCTSIM,. DE 0

FROGRAM SFECIFIC DATA-BASE FILES! DUCTSIM (FREF)
K K MK S K K I IOK SR 3K 3K K SIOK K 3K KK K K KK 8 3K S KK KK XK

RESOURCE NAME STRING # OF RECORDS
DEVLI0000.LVARFREF, DUCTSIM. DE 8
DEVLI0000 XVARPREF . DUCTSIM, DE 1
DEV120000.CNSTFRERP . DUCTSIM,. DE 11
DEV1I0000.AGRFFPRER..DUCTSIM,. DE 0
DEV110000.ALSTFREF.DUCTSIM,.DE 0
DEV1I0000..EXECFRER . DUCTSIM.DE 1
DEV130000. TASKPREF . DUCTSIM, DE |
DEV130000. THLEPRER.DUCTSIM. DR 0

RTMFL LISTING ¢

DUALNOZZ 11727

KK XK X X X X X X X X

X
x
X GLOBAL DATA
x + o + DUALNOZZ
X
X

X X X X X X X

DUALNOZZ OFERATI
KK N K KKK HOK K

NAME
ADCMESS2
ADCMESST
COREMES4
COREMEST
COREMESZ2
COREMES L
DFMESS
DUCTMESS

DUALNOZZ GLOEAL

*
*
SEGMENT x
x
*
X K K K XK

ONaAL.
HOKAOK K

MESSAGES

OF-8YS INTERUPT ME

SIMULATION HALT! ADC VALUE OF AN

STMULATION HALT!

/84

S5AGE

ADC VALUE

10328152

OF AN

MAXAREA

= MINAREA

CORESIM PRE-FROCESSING DELAY ENCOUNTERED
DUCTSIM OR ADC DELAY ENCOUNTERED
FRD OVERFL.OW
FRC OVERFLOW

SIMULATION HALT!
SIMULATION HALT!
COMPUTATION CYCLE
DUCTSTM PRE-FROCE

CONSTANTS

K KK KK K KK K KKK K KK KK KK KK 3K KK XK

NAME TYF

FALSE 3

0 S
FCN 51
FDN 51
FRNVAL.S Il
FRXVALS 51
TCON 51
TDN 51
TRUE £

WON 81
XTO2857 51
XTO7143 Sl

VAL UE

0.00000000E+000
1.47000000E+001
1.47000000E+001
1.47000000E+001
Z2+10000000E+001

MULTT VALUES
?.00000000E+002
?.00000000E+002
1.00000000E+000
0.00000000E+000

MUL.TI VALUES

MULTY VALUES

SCAL

COMPLETE

SSING

FAC

FRMTR

DELAY ENCOUNTERED

N0
E:
B
E

N(Q)
B

(e

B4

NP
E
E
E:

NI NQ
+6 YES
+7 YES
+7 YES
NE NQ
+1. NO
13 YES
13 YES
NE NO
+8 YES
+1 NO
+1. NQ

DUALNDZZ MULTIVALUED GLOBAL CONSTANTS
KK KK K K K KKK K K K KK K KK KK KK K KK KK 3K 3K

(@
@
@
@
@
@
@
@
@

D I SR S,

FRXVALS

0.00000000E+000
U.00000000E~002
1.00000000E-001
1.50000000E~001
Z.00000000E-001
ZeH0000000E-001
3.00000000E-001
3450000000E~001
4,.00000000E-001

FRX
1 @
1@
1@
1 @
1@
1@
1@
1 e
1@

VALS (CONT.)D
4.50000000E--001

%5.00000000E~001
H5.50000000E~001
4.00000000E-001
6$.50000000E-001
7+00000000E-001

7.50000000E-001
8.00000000E-001

8.50000000E--001

FAGE 10

RTMPL LISTING ¢ DUALNOZZ 11/27/84 10128152

DUALLNDZZ MULTIVALUED GLOBAL CONSTANTS (CONTINUED)
K KKK KKK S KK K 2K K 3K K S KK SR KR K KK 3K 0K K OK JCK XK K

PRXUALS (CDNT)
10 9 OOUOUOOOFMOO1
1 @ 9500000008001
1 @ 1.00000000E4000

XTO”HS/

i@ 0 OOOUOOOOLOOOO
24%00000E-002
5’18000000E“001
S5.81600000E-0021
6.31400000E-001
6.73000000E-001
7.08900000E-001
7,A40900000E-001
769700000E~001
7+94000000E-001
8.20300000E~001
8.43000000E-001
8.64200000E~001
8.84200000E-001
?.03100000E~001
?+21100000E~001
?.38200000E~001
?.54600000E-001
P70300000E-001
?.85500000E-001
1.00000000E+000

FIRNFTORRIFAIALSIORLISISDRID

|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
L

XT07143
1@ 0.00000000E+000
1@ 1,17700000E-001
1 @ 1.93100000E-001
1 2.57900000E~001
1@ 3.,16600000E-001
1 2.82000000E~001
1 4,23200000E-001
1 4.72400000E~001
1 5.19700000E~001,
1 5.65300000E~001
1 6. 09500000E~001
1 @ &6,52400000E-001
1
1
1
1
1
1
1
1
1

ey

AT VLE

@ 6.94300000E-001
@ 7.3%100000E-001
775100000E~-001
8.14200000E-001
8.52700000E-001
8.20400000E-001
P+ 27500000E-001
?.64000000E~001
1.00000000E+000

PRI VIT

FAGE

11

65

RTMPL LISTING ¢ DUALNOZZ 11/727/84 10:28152 FAGE 14
DUALNOZZ TRANSFER MAFS
K MK K KK HCK MK KK 3K HOK KK OK
SOURCE TRANSFER DEST. TRANSFER MAF TRANSFER
PROFl“OOH VARTARLE CHANNEL ﬁDDhL““ ADDRESS FaTH
DATGPROC.P. AN L.OCAL 7938
DATAFROC.F. ANF CORESIM 7946 5892 RTEUS
CORESIM.C. SJOBEDONE DATAFROC 7954 5898 RTEUS
CORESIM.C. ACN DATAFROC 7962 5904 RTEUS
CORESTIM.C. ADN DATAFROC 7970 5210 RTES
CORE“IM C. WDN DATAFROC 7978 5916 RTEUS
RN FRC DATAFROC 7986 GHeL2 I-EUsS
FFNA L.OCAL. 7994
FL.C LOCAL 82002
LOR&QTM B WONC 1.0CAL 8010
CORESIM.F. FREFDONE L.OCAL 8018
CORESIM.F. DUCTDONE. L.OCAL. 8026
DUCTSIM.C. WONE CORESTM 3034 RTEUS
DUCTSIM.C. FRD DATAFROC 8042 T-BUS
DUCTSIM.F. FFNA LOCAL 8050
DUCTSIM.F. FLC 1.0OCAL. 8058
DUCTSIM.F. FREFDONE L.OCAL 8064

RTMFL LISTING ¢ DUALNOZZ 11/27/84 103128152 FAGE 13

*
LOCAL. DATA SEGMENT b
s+ +DATAFROC (COMF) X
x

X

¥ K K K ¥ X

MK XK XK XK XK X X X X X X

DATAFROC COMPUTATIONAL FROCESSOR LOCAL VARTABLES
K 3 K KK 5K KK 3K 0K K K 3K K S KK K K KK K 3K KK OK SKOK 3OK XK

NAME DTP IC valLUE HOLD valLUE SCAL FaC XREF FYAL. LOCATION
X NEGATIVE BT
X QUERFL.OW BT
* FOSTITIVE BT
* ZEROD BT

DATAFROC COMFUTATIONAL FROCESSOR EXTERNAL VARTAEBILES
K KK KK K K SIOK 3KOK KKK K 3K K K I 3K 000K 3K 3K SIK 30K K KK SR KO SKOK %

EXTERNAL VARIABLE NAME LOCATION
CORESIM.C.ACNS®0 7962
CORESIM.C.ADNS$O 7970
DATAFROC .F . AN$0 7938
DATAFROC . F . ANF$0 7944
CORESIM.C.FRC%0 7986
DUCTSIM,. C.PRD$O 8042
CORESIM.C. WDNSO 7978

DATAFROC COMPUTATIONAL FROCESSOR LOCAL CONSTANTS
R AR SO 3K KK K MK 3K KK K 3K K K K K K KK K K KK 3 KK

NAME TYF VAILLUE SCAL FAC PRMTR SIZE LOCATION

$HSY04SS 2hen 099 940 000 S0ut Sueh £000 Houn Bebe 00n ens 2ate bers mmen S00s Seas o4Re RERS S00S Ses F0es abos SOES S0ee sves oree cnseseee oen e bees sase berd Seas sron Se0s Shes RS Fess anss bume sone Sete sSbe S4ns setn SHeS bmot saon Sees Sere suos

MINAREA 81 S.00000000E+001 E+11 NO 1 IM-DATA

DATAFROC COMFUTATIONAL FROCESSOR ARGUMENT GROUF VARIAELES
K SR 3K K 0K 3K K KK SR 3K 3K KK KK K K 30K K KK K SOK K KOK 3K 3K 3K O K 20K KK K

NAME TYF LOCATION SIZE USED ITEM LIST

DATA 81 10000 16 7 1) XV DATAFROC.F.ANS$O
2) XV: DATAFROC. . ANFS0
3) XVi: CORESIM.C.ACNS0
4) XV! CORESIM.C.ADNSD
) XV: CORESIM.C.FRC®0
6) XV3: DUCTSIM.C.PRD%0
7) XV: CORESIM.C.HDN$O

67

68

RTMPL. LISTING ¢ DUALNOZZ 11/27/84 10128152

DATAFROC COMPFUTATIONAL FROCESSOR TASKS
3K KK K S K KK 3K KK 3K K KK K MK S KK K SR 3K K SHOK K KOK

TASK ENaABLE TASK EXT. VARIABLE
NAME LATCH DISPFATCHED TINVENTORY

CETDATH. TRUE YES DATAFROC .o AN
DATAPROC . F « ANF
CORESTM. C AN
CORESTM.C.ADN
CORESIM.CPRC
DUCTSIML.CLFRD
CORESTM.C, WDN

DATAFROC COMPUTATIONAL FROCESSOR EXECUTIVES
A K S K K KKK K KK 3K KK K KK K K SOK K IOK MK 3K KOK KK

EXELC FRIORITY SERVICE SCRATCH-FAD-MEMORY
NAME LEVEL TABK(S)Y EXEC 7/ TASK / MACRO
EADADC. 1 NONE 0 0 7
MALN, 0 GETDATA. 0 0 4

FAGE 14

RTMPL. LISTING ¢ DUALNOZZ 11/27/84 10:281%2 FAGE 15

XKoo XK XK X M X XK XK K XK XK XK K K KKK

*
*
EXECUTABLE STATEMENT SEGMENT *
s o JDATAFROC (COMF) x

*

*

¥ XK M K K X

W XK K XK ¥ X ¥ X ¥ X X K X X X X X X

MAIN, EXECUTIVES: DEVLI0000.RTX.DATAFROC.SA

541 ENTER GETDATA
S42 RETURN

N

MAX FATH EXECUTION TIME: 56 CYCLES (WITHOUT COMPUTE DELAYS)
+GETDATA.

BADADC, EXECUTIVE: DEVII0000.RTX.DATAFROC.SA

1 943 IF P .aN= P MINAREA
THEN

2 844 ADVISE H.ADCMESS]
ELSE

3 843 ADVISE H.ADCMESS2

4 Sbb RETURN

MAX FATH EXECUTION TIME: 346 CYCLES (WITHOUT COMFUTE DELAYS)

GETDATA. TASK: DEV1:10000.RTX.DATAFROC.SA

1 8s7 CALL SAMFLELDATAI]
2 548 ADVISE R.DATA
3 5%9 RETURN

MAX PATH EXECUTION TIME: 272 CYCLES (WITHOUT COMPUTE DELAYS)
+HAMPLE

o o « NONE

OFERANDS SUBJECT TO COMPUTATIONAL DELAY (EXT MEM)
DATAPROC.F . AN
DATAFROC « F L ANF
CORESIM.C.ACN
CORESIM.C.ADN
CORESTIM.C.FRC
DUCTSIM,. C.FRD
CORESTIM.CWDN

69

RTMFL LISTING ¢ DUALNOZZ 11/27/84 10:28152 FAGE. 16

K K XK X X X X X X X X X
X

LOCAL DATA SEGMENT *
+ ¢+ +DATAFPROC (FREF) X

*

X XK K X X X X X X X X X X

% K ¥ XK KX

DATAFROC FRE-FROCESSOR LOCAL VARIARLES
SR K K KK KKK KK 3K K K K K KK SR K SOK K XK 30K 3 K KK KK

NAMIZ DTF IF UALUF HOLD UALUF SFﬂL FAC XhFr PUﬁL LOCATION
AN 81 1. 60000F+00? 1. 60000 E+11 YhS 1 1000&
ANF 51 1+26317E4+003 L. 26317E+003 B+l YES 1 10006

NEGATIVE BT
OVERFL.OW BT
POSTTIVE BT
ZERQ BT

% XK I X%

DATAFROC FRE-FROCESSOR EXTERNAL VARTAELES
AR K KK K KKK KK ACK I OK SCK K 3K K K IR K KK SKOK K.

EXTERNAL. VARTAELE NﬁMF LOFQT]UN
cO IM.C.ACNS0 /96?
CORESTIM. C.ADNS0 7970

CORESIM.C 4 JORDONESO 79%4

DATAFROC FRE-FROCESSOR LOCAL CONSTANTS
K K KKK KKK K K 3K K 0 3K K 3K KK KK K 3K K

NAME TYH VAL.UE SCAL. FAC PRMTR SIZE 1LLOCATION
K1 I1 1.00000000E+000 NONE YES 1 10008
K1F049 51 1.04900000E+000 41, NO 1 IM-DATA

SCH1 81 1.04%200000E+000 E+11 NO 1 IM--DATA
KiF&622M4 81 1.62200000E~-004 B-12 NO 1 IM-DATA
K2 51 8.00000000E+002 B+l NO 1 IM-~-DATA
MAXAREA 81 1.60000000E+003 E+11 NO 1 IM-DATA
MINAREA 51 G.00000000E+001 E+11 NO 1 IM-DATA

DATAFROC FRE-FROCESSOR ARGUMENT GROUF VARIABLES
KK KK KNI K K K K KK 3K KK MK KK 3K MK KK K K KK SKOK XK K

NAHF TYF LOLATION QIZE USED ITEM LIST

ACNG 1 10014 1 1 1 XU3 CORE IH C ALN$0
ADCCHN I1 10400 32 1 1) CN:! DATAFROC.F.K1$1
ADCVAR S1 10106 32 1 1) LV DATAPROCF.ANSL
ADNG 51 10040 1 1 1) XV: CORESIM.C.ADN$O

RTMFL. LISTING ¢ DUALNOZZ 11/27/84 10128152 FAGE 17

DATAFROC FRE-FROCESSOR TASKS
K KK KKK KK SR KK MK K K K 0K 3K 0K XK 0K XK K

NAMF lﬁTfH D] FGTFHTD TNULNTURY

dOBDUN&. TFUE YEo FORFSIM C.JOPDUNF
WRTACN., TRUE NO CORESTIM.C.ACN
WRTADN, TRUE NO CORESIM. C.ADN

DATAFROC FRE-FROCESSOR EXECUTIVES
KKK KKK K 3K KK 3K K MK 3K K KK KK 3K 3K 3K

EXEL FRIORITY SERVICE SCRATCH-FPAD-MEMORY
NAME LEMVEL. TASK(S) EXEC / TASK / MACRO
GETAN, 0 dOEDONE. 0 0 e
WRTACN.
WRTADN .

71

72

RTMFL. LISTING ¢ DUALNDZEZ 11727784 10128152 FaGE 18

o
K4
10
11

12

1

2

1

2

NR1ﬁ(N. TQSV’ DIUI'UUHU.h1XfIF:

KoK K K K K XK K KK K K K K K K KK

*
*
EXECUTABLE STATEMENT SEGMENT *
s s DATAPRDCG (FREF) X

*

x

oK XK K K K XK K K K XK XK XK XK K X X XK

GETAN, EXECUTIVE DF“1?UUUﬁ.h1fIhFP+hhThIIULo»G

G ﬁIL RLADIﬁUPUhhvﬁD(.
G422 ﬁNwﬁNH
$43 IF GNHMINGREA

THEN
G4 AN=MINAREA
G950 ACTEMATE BADADC

ELSE
59564 T AaNEMAaXAaREA

THEN

G AN=MAXAREA
G483 ACTIVATE BADADC
GH9 ANF = 1P 049 K1 FA22MA%AN
5410 ENT JOBDONE
S DYSFATCH WRTACN y WRTADN
G812 RETURN

MhX FATH EXECUTION TIMES 1991 CYCLES (WITHOUT COMPUTE DELAYS)

+ .lL]t<[)C)FJEZ .
+WRTALN .
THRTADN .

JDATAFROC HA

GH13 Catl DACLEACNGT
Se14 RETURN

MAX FATH EXECUTTION TIME: 48 CYCLES (WITHOUT COMPUTE DELAYS)
+DAC

WRTADN, TAGK?S NFU1‘UUOU hlkfﬂflobﬁlﬁllﬂf0)h

GH15 CaLL. DACZTADNG
%14 RETURN

MAX FPATH EXECUTION TIMES 48 CYCLES (WITHOUT COMPUTE DELAYS)

JORDONE. 1hﬂh. DEVIINN00. hTX[hff@DAThIhOF G

TEST]F FCORESTM.C .\!ﬂlfM)NF
THEM

G118 REDQ TEST
ELGE

G419 ADVISE . DFMESS

&<
164
2
176
1ed

pigs)

1746
174
264
40
PG
14

32

32

1

RTMPL LISTING ¢ DUALNOZE 11/727/84 100283152 FAGE

4 8420 RETURN

MAX FATH EXECUTION TIME: 314 CYCLES (WITHOUT COMPUTE DELAYE)

TRANSFERRED VARLA

ANE

FRANDS SUBJECT TO COMPUTATIONAL DELAY (EXT MEM)
CORESTIM. C.ADN
CORESTIM. €. JOEDONE

14

14

73

74

RTMFL. LISTING ¢ DUALNQZZ 10328152

117277684
XK OK K K K K K K K X X X

x
X
LOCAL DATA SEGMENT 3
s+ JCORESTIM (COMFD *
H

*

® XK ¥ X WX

X X X X X X X X X X X X

CORESTM COMPUTATIONAL FROCESSOR LOCAL VARTABLES
xxxxxxxxxxxxxxxmxxmxxxxxxmmxxxxxmxxxxxxxwmxxxxxx

NAME DT I UALUF
ATN 81 0. 00000|4000
ACNA S1 0,00000E+000
ADN S 0.00000E+000
FFN Gl 0.,00000E+000
FINE &1 1.00000E+000
JOEDONIE B FAL.SE
FRE 61 1.00000E+000
WDN a1 0. 00000E+000
X NEGATIVE BT

OVERFL.OW BT
* FOSTTIVE BT
¥ ZERO BT

HOLD VALLE

0. 00000H+000
0.00000E+000Q :
0.00000E+000 E+1.0
0,00000E+000
L.00000E+000
TRUE
1.00000E+000 B
0.00000E+000 ;

CORESTM COMPUTATIONAL FROCESSOR EXTERNAL VARTABLES
FOKKK K K 33K KK KK KK KK 3K 3K K 3K K KK KK 3K 3K KK 2K K KK 30K KK 3K K K KK KK

EXTERNAL. UARIGFIP Nth

f)hTﬁ Fx(l(o n’\Nf ‘l>0
RESTIM o P DUCTDONES O

IMFLFFNASO

SIMFLFLES0

GIM PO PREFDONESO

CORESTM . F o WDNC S0

IﬂLﬁTION

/946
BOZ2E
7994
200z
8018
an1.0

CORESIM COMPUTATIONAL FROCESSOR LOCAL. CONSTANTS
9K KK 3K KK K 3K K KK 2K K 3K K KK 1K KK K K K K KK K SOK HOK KK MK KK
th

TYF Uﬁl-UF-

FAl%F £
HLF

SCH1
KON Sl
KF2588 81
SCH2 81
P53
]

FFN

IU(ﬁTTUN
1003?
IM-DATH
IM-DATA
TM-DAaTa
IM-DATA
TM=-DeT e
IM-DATA
1003&
10034
10080

QAL PAQ PRMTR SIZE

GLOEAL Uﬁl Ul
1.00000000E4+000
1.00000000E+000
5.1”400000F

NQ
NO
NO
NO
NO
NO
NO
YES
YES
NQ)

N(JN[
Bl
B2

-0 01 -0

4 001 £l

E.MSBUOODDL 001 B+

$.30000000E~001 B0

GLOBAL, VALUE E+é
GL.OEAL VALUE B+7
GLOBAL. UALLIE NONE

Sl
61

ul
S1
Sl
I

H&Ab*ﬂs*bﬁHsa'

FAGE

FUAL.

20

1. fl(‘hI I(]N

10014
10026
10016
10006
10010
10002
10030
10022

RTMPL LISTING ¢ DUALNOZZ 11/27/84 1012683152 FAGE 21

CORESIM COMFUTATIONAL FROCESSOR LOCAL CONSTANTS (CONTINUED)
A K K KK K KK K K K K K KK 9 2K KKK SHC B K SHCOK KB 60 K 3K K K K KK K K

NAME TYH VAL.UE SCAL. FAC PRMTR SIZE LOCATION
PRAVUALS 51 GLOBAL VALLE B+l NO 21 10082
TCN S1 GLOBAL VaLLlE E+13 YES 1 10124
TRUE I GLOEAL VALLE NONE NO 1 10128
WCN 51 GLOBAL VALUE B+8 YES 1 10126
XT028%57 Sl GLOEBAL. VALLE E+1 NO 21 1003
ZERD S1 0.00000000E4+000 B0 NO 1 IM-DATA

SC$3 51 0.00000000E+000 E+i0 NGO 1 IM-DATA

CORESTM COMPUTATIONAL FROCESSOR EXECUTIVES
K KK KK K 305K K 3K K K K K KK SROK KK 0K 3K K 3K 2K 5K 3K K OK KK K

EXEC FRIORITY SERVICE SCRATCH-FAD-MEMORY
NAME LEVEL TASK(S) EXEC / TASK / MACRD

MATNSIM. 0 NONE 0 0 2

75

76

RTMFL LISTING

-
2

3

16
17
18
19
yay
&1
a2
23
q

3N

¥ X MK X M X

¢ DUALNOZZ 11727784 10328152 FAGE

¥ oM XK XK XK XK XK X XK XK XK XK XK XK X X X X

s+ +CORESTM (COMF)

»

3

EXECUTAELE STATEMENT SEGMENT *
X

*

*

K oX X XM X M XK X X X X X X X X X X X

MAINSIM. EXEC lJTTUE’ DEVLS 0000 D‘)C C[-"‘\.LC‘I:M'.)A

541
53 ¥4
G653

844
S5
S4é
S%7
GHE
8549

G410

S411
54612

S$13
5914
8415
G614
H417
5418
5419
S$20

S4$21
8422
654623

S424

\JDL DONI*' FAaLSE
FRC=F0/FCN
IF OVERFLOW
THEN
ADUI‘:‘E’ H. LOF\E:MF\,)].

ﬂLNﬁ hLN*NFNX%GhT(TCN)
IF #.PF . FREFDONE
THEN
ADVISE M. COREMESS
IF PRCEKPES
THEN
FFN=KF2588
ELSE
FFN==FFNEX P FFNA
IF OVERFLOW
THEN
ADVISE H.COREMESZ
IF FENEZERD
THEN
ACN=ACNA/FONXFFNX B FLC
ELSE
ACN=ZERQ
IF &, F L DUCTDONE
THEN
ADVISE M. COREMESA4
IF ACN=ZERQ
THEN
ADN=ZERCY
ELSE
ADN=DATAFROC . '« ANF-ACN
WDN=ADNK o o WHNC
JOBDONE =T RULE
RETURN

270
374
10

180
1154
780

l'?')

180

44

yrpes
222

10

180
38

736

258

122

180
38

268

410
458
270

14

MAX FATH EXECUTION TIME! 5792 CYCLES (WITHOUT COMPUTE DELAYS)

TRANSF

\J(lE DONE

FRC

ERR

ADN WDN

Ofl RANDS &)U[JECT 10 COME UTAT TONAL ll)EZl...ﬁY CEXT ME“M)

l"‘[]F\F ‘>IM F .F REF [)(1N["

RTMPL. LISTING ¢ DUALNOZZ

CORESIM.F FFNA
CORESIM.F.FL.C
CORESIM. P DUCTDONE
DATAFROC F « ANF
CORESIM. F «WDONC

11727784

1028152

FAGE

23

77

RTMPL LISTING ¢ DUALNDZZ 11727784 10828352 FaGE @4

K OK K K K K K K K K K K KX

X X
* LOCAL. DATA SBEGMENT w
X + o »CORESIM (FREF) x
* #
XK K K K K K K K K K K K X

CORESTM PRE-FROCESSOR LOCAL. VARTARLES
K KK 3 I K K KKK B KKK 5K 8 54 XK K K MK KK

NﬁMI DTH TC valUE HOL. UﬁLUE seal. Fac XREF

)(TDUNI & 3, AL

FFNA Gl 0.00000E+000 0. OUUUOIGOUU

.. 1 B.25000E-001 G 25000E-00 1

| 1.00000E+000 1.00000E+000 St
FALLSE TIRUE MNONE

0,00000E+000 0.00000E+000 B2

10006
1Lo0L0

1onte
10014

1
]
1
1 1e06z
1
1

*® X K %

CORESTIM PRE-FROCESSOR EXTERNAL VARXIABLES
SHOK 0K 3K SR KK KKK 30K KISR0 KK SR K K S K S KK IO e

EXTERNOL, VARTABLE NAME LOCATION

DUCTSIM. C HWDNES) 8034
CORESIM PRE-FROCESSOR LOCAL CONSTANTS
SCOK MK K K K KK S 5K K KK KK KK S K K K KK K KK

NAME TYF VL UE SCAL. FAC PRMTF SIZE IU(hl[UN

3 r [Iﬂlhl VALLUE MNONE NQ

KiF 51 1.00000000E+000 Ea+1, NO
K1P362% o1 1.362Z50000E+000 ! NO
KF7 158 81 7.15800000E-001 B0 NO
3225 S 8.250600000E-001 B0 NO
" 51 B. 25000000001 -+ [R18] TH-DATA
=0 sl GLOEAL VALLE Eit-é YES Lo026

1 10034
1
1
1
1
1
1
FCN 51 GLOEAL. VAalUE B YES 1 10026
1
1
1
1
1

TH-DATA
TM-DATA
TM-DATA
TM-DATA

DN 51 GLOEAL VALLIE Bv7 YES L0018
FRNVAL.SG Il GL.OEAL, VALLUE NONE N0 1007
FRAVALS $1 GLOBAL VALLE (R NGO 2 10074
TRUE 1011é
XTO7 143 10030

GL.OEAL UALUE NONE: [RIN]
GLOBAL VALUE B NO 21

0=

RTMFL LTSTING ¢ DUALNOZZ 11727784 1020283152 Pl 25

CORESTM PRE-PROCESSOR EXECUTIVES
G N 4G DK T K R KRS0 2R DMK O K DR IR IOK K

EXEC FRYIDRITY SERVICE SURATOH- A0 MEMORY
NeME LEVEL TASBKCEY EXED 7 Tagk / MaCrO

FRFCTMSG 0 MOME 0 0 &

FTML LISTING ¢ DUSLNDZZ 11/727/784 10028352 FAGE 26

MoK X M M X XK X K K K XK K XK X XK XK X

EXECUT (\l“l E.
SORE CFRERD

b3
KA
th'H MENT SEGMENT x
H
*
oM M W K XK O M WO K MK K oW M KO OmW

CESTM, G

{1F %(‘u 5P LSRRG

G TFEFLC LR
THEN

L IR LG
O FE NN
10 8410 FREFDONME==TRUE
RN % 5 § WION ==F'DNZ*KI'.)LHIIT(E‘;IIZM.[Zi.l«!DNIEE!
12 8412 DUCTDONE = TRUE
13 8413 RETTLRN

MAX FATH EXECUTION TIME?: 2622 CYCLES (WITHOUT COMPUTE DELAYS)

WIDNC FREFDONE
DUC 1 [YONE

RANDS GUE

CT 7O COMPUTATIONAL DELAY CEXT MEM)

|)|IL‘”I‘ IM . (“ WDNI

RTMPL, LTETING § DUALNDZZ 11727784 10128152 FGE 27
KOK K K K X w K KKK K K

X
LOCAL. DATA SEGMENT *
W DUCTEIM (COMFD ®
k.

X

DUCTSIM COMPUTATIONAL. FROCESSOR LOCAL VARTABLES
KKK S HC K OHC 6 D SRS RS 2R S S 00 US4 K K K K S K KSR S K A XK 3K XK

NAME DYE TG VALVE HOLD WALLIE 50al FaC X

Fudl LODCATTION

R L 10002

ik 1 10010

1e0D0D0E+D00 1.00000E+000 Bed YES 1 10016

WDNA Gl LSLOGSEH002 1. GLESBE00Z Bt { 10014
B 1

Ikh 51
i
1
|
WDNE Gl 0.00000E+D00 0.00000E+000 10008
F
1
T
1

5
FFNE: Gl
FiRD &1

0. 0”0”0|6000 n.nununlcuno 3
1L.00000E4000 1.00000E+000 i

K NEGATIVE]

(OVERFL.OW T
* FOSTTIVE BT
* ZERQ BT

DUCTSIM COMPUTATIONAL FROCESSOR EXTERNAL VaRTABLES
HOK KK K 3K 2K KK SR SKOK 32K T K IR S 3K SHOK SHCOK O 3K K KK KK KK KK K HOK

LXTFRNﬁI VARTH

DU(IqlM Fo FENA%GD :
PUCTEXMF 5] 0 ?HJR
DUCTETIM, F W PREFPDONES 0 80466

DUCTSIM COMPUTATTIONAL FPROCESSOR LOTAL CONGTANTS
RCKE K0 3 4 K K KKK 3K I K KK KK S 24 K K K S 0K 4 70 K TR KSR K KK 9K K K

NAME TYP VAL UE SCAL FAF FRMTR SR IH(hlIUH

KAk 5] 1.00000000F #UUO EE NO TH-DT 6
SCHL 5 1.00000000E+000 B2 MO THA-DATH
51 tERIK: 0000001 [E+0 NO Tid-DeT iy
Bl FL.58600000E-001 B0 NO Tr-Datn
2 51 2.58800000E-001 B+ NG IM-DATE
hfﬂ? S H.300000G00E-001 B0 N0 TM-DATA
-0 51 GLORAL. VALUE Ed YL 10022
FDN Sl GLOBAL VallE B 10020
FRNUN.S 1 GLOBAL. VALUE NIONE NGO 1044
FRXVALS 61 GLOBAL. VALLE i+, MO LonsE
TON 51 GLOEBAL. VALLUE Ee13 YES 10110
XTOZSS7 Sl GLOBAL VaALUE ZE MO 10024

2N

P
b

81

82

RTMFL. LISTING ¢ DUMSLNOZE 1L0/27/84 10028752

DUCTSIM COMPUTATIONAL PROCESSOR EXECUTIVES
2K 0K 5K 3K 3K B S8 R DK S 0 ORS00 O 06 K 0 KRS DK K e

EXED FRIORITY SERVICE

SCRATCH-FAD-MEMORY
N LEMVEL. T :

XEC 7 TASK /7 MACRD

COFPOCE . 0 NONE 0 0 &

FAGE

28

RMPL, LTSTING ¢ DUALNOZZ 11727784 10528192 G 29
HoK K M XK M K XM K K K KX MM OXK K KK

EXECUTARLE

K
X
xK STATEMENT SEGMENT
X 2 e S DUCTES
E 4
x

*
p
M CCOMM x
*
*

WMo WM XK W K K XK K N K N K K K K K WK

s EXECUT I.UI DEVL 0000, DSC, DU

1 sl FRD=FO/FDN A7

Rt ¥ TF OVERFLOW 10
THEMN

3663 ADVISE

4 GH4 FFNE

5oGHE WONG

b G596 TF ., PREFDONE

THEN

ADVISE M. DUCTHESS 160

Gt TF PR F
THEN

9 B9 FFN=KE2EEE 44

Hoa COREMESZ 180
I"JF'\'T ¢ l'(II.I s i

oSN
‘im0
0
vi
~

10
11
12

FFMEX o FFNA
FMK o L WDNA

RETURN

MAX FPATH EXECUTION TIMES: 3418 CYCLES (WITHIIT COMPUTE DELAYS)

L DELAY (EXT MEM

DucTaiM BFLG

84

RTMPL LISTING ¢ DUALNODZE 11/727/784 10

oW M X M MO M M O OK XK K
¥

LOCAL DATA SELGMENT *
s DUCTEIM (PREFD *

*

KO K K K K K M K K K XK X

¥ XK ¥ ¥ XX

BUCETSTM FRE-FPROCES

HORL.OCAL VARTARLES

0K KA K MK K AN A K A R SR HC R N I IR OO K

NhMl DTE TG VALLE

0. 0”00“!9000

8. 20000001

L.00000E+000
F el GE

IINh
flf

UUI...T\F L.(JN
FOSTTIVE
ZERD

*® X ¥ X

HOID Vi

IR R L]
¢ ()f\ LRV

ﬂ¢00ﬂ00Ff000
L, 25000001
L.000D00E+000

TR

DUCTSEIM PRE-FROCESSOR LOCAL. CONSTANTS
K IO K KK K 3K 0K 3K K S K 3K KK K KK K 3K K KK 4 OK

NAME TYR umnm

£ GL. (]F (\l VAL llF
S 1.00000000E4+000
81 14W?500000F4000

L 51 2.25000000E-001
SCH1 81 8.?5000000F 001
Fo Sl GLOEBAL. VALUE
DN 1 AAL. VALUE
FRNOUALS Ii Al VALLIE
FRXVALS Gl .. VALUE
TRUE i A VALUE
XTO7 143 i WAl VallUE

Pﬁ ¢
K1
b F
KF

DUCTSTIM PRE-FROCESSOR EXECUTIVES
K K 5K K K 3K KK K K S 3 20 K 5K 3K KKK 3K K KK B K O 3K

EXEC FRIORLTY SERVICE 8C
NAME LEVEL, TASK(S)

C
|hf(TNQ. 0 NONI

0

SCal. Fal

NONE
B+
NOME
RN

NE)
NO
NGO
N
NO
YES
YES
NO
NO
NO
N0

RATCH-FAD--MEMORY
7/ TABK

7/ MACKC

I|H SCAL.

FRMTR

|+1
Bt
B+
NONE.

FAC

\I/F

FAGE

XhIF VAL

Yhi
YES

M
YES

L. ()((\1 TON

IUOI(
TM-DaT
TM-DATA
TM-DATH
TM-DATA

100290

10016

100464

10066

10108

10022

1
1
1
1

30

lH(nIIUH

lUUUé
10010
1000%
10014

KT

Y
N

2w

10

ML LESTING ¢ DUALNOZE 11727784 103028252
KK K K K M K K K K KK K K K K K K K

EXECUTARLE STATEMENT SEGMENT *
+ oS DUCTSIM (FREF) ®

KoK W K O K OH K MK K WM K K K K KK XK K

FRFCTNSG . E

CCUTIOVE S DEVLLI0D00..DSCHRRER ., DUCT

S FREFDOME:=FALSE
842 FiRD=F0 /DN
643 FLC=KLPS7 S5-FRD
L4 IF FLE=KLEF
THEN
53 491 FL.C
ELSE
53 TF FLCIKPE2S
THEN
G467 FLOC=KPB25
o FFNA=FUNLLFRIVALS » PRNVALS » XTOZ 143 FRD
549 FREFDONE:=TRUE
G510 RETURN

st

MAX FATH EXECUTION TIMES 177¢ CYOLEDS (WITHOUT COMPUTE

TRANSF ER

ED VaRIABLES

FENA FLC FREPDONE

RANDS SUBJECT TO COMPUTATIONAL DELAY (EXT MEM)

s o o NONE

FAGE

DELAYS)

31

Yy
.60

174
750
184

16

85

86

Appendix B—Error and Warning Messages

TNFQRMOTION FERTAT
Cly o wm) TN THE

T THE PROGRAGM TS ENCLOSED WITHIN anGLE

DEL.)..MT 1| s ENTERED
) LEENTRY -

Al fl“ll “‘;
COATELOG :i'.

14 “l TION &
Lo ONLY 0 RTX
Lo CINLY '.I. 'l'["ll‘
17 MULT-

(II(‘\I (‘“:l
X A TWEE
Sl DEF INI l LONE2?

il n.EYSES TG T

e NON-
‘ Nl
NULL. L
ML T DEF TN
TI)H M(‘\I‘Y I)l

T{)f] MY ((H (IN‘ :
UNDEFTINED F CENTRY

IDLCCONSTANT T

[HN FORMET CENTRY

N Uﬁl LIS FENTERED -
A l'l"ll L EDKE B 2
(llN')TﬁN'(ANNOT E &
o 1o TN "ﬁl H]E

ISR ’I ’“m Ul """ SUAE SRR

SRR S NUMBE R QF e LRSS

IWINT = X
RINER R AT
TOO MaNy
Frial., UM

ECTFTED

9 OBFECTFED

S l.)l'\l“fnf° K<
TNED HI\I:

MO P ARSI TR
& TOO MANY
i 'l"l'.')l"l MY

TV E o INAMET

0 Fif‘ u

THNI

! LT O] R O
U AEMELL

METLON O CONFLICT WXTH <CONSTANT T
l JTTH 0 :l LEAL CONSTANT {CONSTANT T
FROGRAM
Tnl LY DUPLYCATION WEITH IEXEC T
STASK T
i SENTRY

» CFPROCESSOR TYPE

\‘nl Tk
Mlll l X

L GHAMNEL, TS
OMETANT T
HETANT 1

CODF XF-STATEMENT L
COF GTA G

TED AT END OF EX
NT TO END (! TLLE

CREAL NUMERER 585 SrECTE

TR

GOBPECEFTED:

R] s
SCOMMAND

3 INFORMATIION
IH N NU1
- NUF

'(UMMAND T
Tz

\m
¢M) .Hy SR Wy JED

(.)f)) (};-‘.;(7-
\!l"\f'ﬂ

NP[) ﬁl(llMLbJ] BT
URE/OIRG GROUF DTE L
NED ADVISORY ARGLUME
HIE ORTGINAL WXTH ERROR:
DISFATCH COMMAND TLLEGAL ON (UM[U!h[IHNﬁI
D GENERATING AN XNFTNITE LOOE!
FINED COMMAND $ < COMMAND T[”
MUF NT O COUNT MESMAT
Ak L LR < ARG RE QLY
ML L. Itht TUOM ENCOUNTY
TLLEGAL. RE ALTING OF COp
REQUIRED MACRO NOT TaERGET -
MULTIFLE 0 ENCOUNTERED IN MUF
I MISEING TN le
MUVE NamME M :
EXFRES S TON
CONOT EXF
UI!hﬁYUh M

COMUMBE R OF ARGUMENTS)
JUINT=)

=0 COUNT =)
J S T S N

SOLING TNFORMETION

T TNDE X

) DHTH T PUFUNCTYION D DT
NEAME S ks
’ hhlh ”“*Q ZIRT.ACIfuIUNDTIUN T g
. NG A TLE ST QHQRALTL‘

Uﬁ1h iRt
TARGET Sl
AN DATH T

ATTON T DT

TOO LARGE
COTYFED M
700 IN

INAME

©INAMET

SSTINATTON DTF CONFILTET $- FJI|T4|
ROTYFE CONFLIGT S <OHANNEL T,
D LOCAL VARTAELE S <HAME:

ATION (STMGLEY DOES NOT SURFORT TNTRA-FROCESSOR THNTERRUPTS)

166 S OTYEE S ACHANNEL TD <PROC TV

169 o UNDE
170, CONETEU

88

T

ﬁENfUHNH

L ING EMCOUNTERED S -

GION ﬁﬁlU)]HIN]¢i
ﬁDNlﬂul:'

DLLiMﬁL FOTMT IVFIthH

IN FLOATING FOTNT M

89

1 LIST VERSITON

RTMFLS

X

X

X FROGRAMS

¥ FUNCTLIONS
¥ GENERATEDS
x

X

X

REGUIRED TARGETY MaCRO FILE

INITIALS
o CHES
«AVT

« AUX
+AVG
«AVE

« AWE

« MOFE
o XO L $F
e XA
« XO2EF
» XVZ S
« XAZ B
« XV240
. |ZZ' 1', |ZI'
JESC
« AKSF
ARG

N
'|

ORGS

DS

DH%

L%

DiNgs

DATASEGH

DATAENDS

THTXVASE

Appendix C—Assembler Source Files for

DUALNOZZ
DALE J.
DAT AR
RTX

1172

MACRO
EQU
EGL
EQL
QL
AN
EQL
EQu

EQLS
EXRIN]
EQL
EQL
EQL
EQ
oL

MACKD
ORG
ENDM
MACRD
ne
ENDM
MAaCko)
NG
ENDM
MR
DECSL
ENDM
MACRO
DCJL
EENDM
MACRO
ENDM
MACRO
EXNDM
MAC RO
CME I
| o
(:
BER S

Dual-Nozzle Simulation
1

042682

ARFAST
0~ COME

7734

$&1.0
6344
$E4A45
$EAE
$E47
S840
($P18IRE
DR
iy DK
CEPEA YN
CEDEC Y K
CEPCL IR
(HPCAIRE
CEPCH YR
CEYCD YK
RO Y R
CEPD& I XL
CEP0NE 2 w22
{(HPDPIKZ
{EDPON)X
$1400
$1F00
$1F0A

N

N

N

N

I\']')

(N1 o D
TAZNR+4

3

1i/30/764

10328857

CONL = o XV XED (Ad) v D7

TEEND

3

+
3

(KD

Lt
ey

V]

DEVL 30, QEJCOME DATAFRO

FAGE

wi]
59
&0
&
&2
&3
&4
&5
&b
&7
&
&9
20
71
72
73
74
7%
7éH
77
78
e
&0
21
o
83
214
€5
864
837
39
A
?1
P2
@3
&4
P
@6
Q@7
3
@9
100
10l
10
103
14
10%
1046
107
108
109
110
11t
112
113
114

2 LIGT VERSION 0426682 3 11/730/8% 13102125 DEVL 0. QBEJCOMEP , DATAFROC

TAINEG

TAaINE

THINE@

ADVIGE$H

ADVISE :R

ARINE

ARENE

AR3NE

RETLIRNST

RETTLIFRINGE

RETURNST

EACKEXED

FOREEXED

EMNTEFRH

LR
ADDA
TRAPY
CMFA
(LIS
NOF
ENE + 9
CoMF
B 5

MOy

MOVEF L.

MOVE L
MOVE , I2
MOVE . B
ENDM
MACRO
MOVE . E
TRAR
ENDM
MACRO
MOV, k2
LI L
TET B
NOF
BEQ D
ALDAL L
TRAFY
CMPA
EFEN 2
CME L

L 5

ENDM
MACRO

MOVEM L.

JMF
ENDM
MR
BT
ENDM
MACREO
RTH
ENDM
MAaR0
LEA
ENOM
MACKD
1LEA
ENDM
MARD
TST

EED 5

0%

1o D

£0 > 49
CONL~ o XVUC IR (A4) s D7

ToELN2

(NL+31D1L 00 » D5
REZYAN
DEyNL+$1D100

35N\
F0e (NI~ XKVCIXRZDY (A
D7y (N1-1)

PN e D

i

Ly o FLAR A)
05
+ AVES

AR\
#1 9 DG

137 v 3%
ARLINE

L AWC s DE
AR

D5 AW
f3e o« AVE
£33y o AVT

E NI -1V 4
fle AVS
$&y BALFFFQ

N4 A0
(0D

NI-N2yadd

NL-N2 e AT

N
*--4

91

FAGE

115
114
117
118
119
120
121

gy
| /.?..42.

1273
124
125
126
127
128
129
130
131
132
133
134
135
134
137
134
139
140
141
142
1473
144
145
1446
147
148
149
150
151
158
153
154
15%
156
157
158
159
160
1&1
162
163
164
1.46%
164
147
168
1649
170
171

92

3 LIST VERSION 042682 3 11/30/84 1331023125

EXLTS

CALL.%

HLD$S L

NEQBST

LDYIHE

LDM$SG1

RONTE

SMINE

GMINE
HGMINE

JER
ENDM
MACRO
JMF
ENDM
MACKRO
TIFNEC
LEA
MOVED . L
ENDC
TFNC
L.EA
MOVE . L.
ENDC
TFNEC

MOVE L L
ENDC
TFNE
LEA
MOVE . L.
ENDC
JER
ENDM
MACHRD
MOVE
ENDM
MACK
CME
ERNE
EINDM
MACKD)
MOVE
ENDM
MACED
MOVE
ENIM
EQL

MOVEA . L.
MOVEA L.

MOVE L.
ADDA
MOVE
ASL.
MOVEA
TST

RTS
MOVE
MOVE, L.
MOVE
MOVE
ARDM
MOVE L L.
MOVE
MOVE
SLEQ

“1+4
N

LAV
\Z»Al
ADy (A7)

U AN
\N3sA0
Ay~ (A7)

TN g
N4» A0
Al y A7)

' |, '\5'
NS0
A0y~ (A7)

N
\1ls—~(A7)

VR AN
Nt

LAV ERN)

\NZs\1

898

(A7 1+ eA0)
(A7) 4yl
A0y~ (87D

e AL

(Al +yD0)
12y D0

DO yAD
(AL)+
SMINE

F1vy-2CA1)
RONTy (A1) +
(ALY +D1
(ALY DO
Al s a0
(ALY+yrz
DOy DY
CAZY 4y (ADY+
A1 0 15

DEVL 0, QBJCOMP s DATAFROE

FAGE

172
173
174
175
176
177
173
179
180
181
182
183
184
185
184
187
188
189
1920
191
192
193
194
195
194
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
21%
216
217
218
219
220
291

A L.

222

223
224

225

226
227

22

4 LIST VERSION 0424682 3

11730784 13102125

BNE.S SM3\@
SUEQ *1yD1
BNE . 5 SM2NE
RTS
*
x
* CONTROL. AND INITIALTZATION
INITIALS
DATASEGS
X
X
¥ FOREGROUND EXECUTIVE MAFS
ORGS 5120
DL% 0 ¥ACTIVE EXECUTIVE
DL$ BADADC. XFPRIORLTY=1
DCs 0 X, LEUSY FLAG
DC%) Ko JENDING FLAG
DlL% 0 *NOT USED
Di-% 0 ®KNOT LISED
DL 0 *®*NOT USED
DL$ 0 *NOT USED
DL% 0 XNOT USED
Di.$ 0 XNOT USED
DL$ 0 KNOT USED
DL% 0 XNOT USED
DL.$ 0 xkNOT USED
DL% 0 XNOT USED
DL$ 0 *NOT USED
D% 0 XNOT USED
D% 0 MNOT USED
DL.% 0 xNOT USED
x
x
¥ EXECUTABLE SEGMENT ENTRY ADDRESSES
ORGS 0376
DL MAIN.
DIL% EADADC,.
DL.% GETDATA.
X
x
¥ SIMULATION TRANSFER MAFS
ORGS 5806
* 5988 FROM DATAFROC.F.AN
DL -2 Koo o REGERVED
DC% -3 ¥, 4 JEND OF MaF
X 5892 FROM DATAFROC P ANF
DCs 4 *,,TO CORESIM RT-BEUS
DCs -2 X, v o REGERVED
DO -1 X, . JEND OF MaF
X 5893 FROM CORESTIM.C . JOEDONE
DCYE 0 ¥, s TO DATAFROC RT-BUS
D% A Ko s o RESERVED
DCE -1 Hae o END OF MaF
x 5904 FROM CORESTIM.C.ACN
DO 0 ¥, . TQ DATAFROC RT-BUS
DD‘I’ ""?.. *o + e RFSERUED

DEVL 0., 0BJICOMF . DATAFROC

93

PAGE 5 LIGT VERGTION 042682 3 11730784 13002325 DEVL S0 QBRJCOME . DATAFROC

DO -1 ®a JEND OF Mo
x 5910 FROM CORESIM.C.ADN
D% 0 ¥, TO DATAFROC RY-ELS
DE -z Xy o RESERVED
(blu) Koo GEND OF MR
*® 5916 FROM CORESIM. o WDN
D% 0 XK. TD DATARROC FT-ELS
DO - X4 o o REGERVED
D% -1 Koo W END OF MaF
®x o EepD FROM CORESTM, (. FRC
D 0 Wo o T DATARROD T-EUS
DO o Koy o REGERVED
DL -, Koo JEND OF Mok
5928 FROM CC Mo B FF NG
D -l : ERVED
DC -, PN W MAF
ML P LG
DC# - RVED
DE -1 Koo JEND OF Mar
936 FROM CORESTM, P, WONG
249 D% i Xy o o REGERVED
250 DC% -1, Lo o JERND OF MAF
X 5940 SORESIM . F o FREFDONE
DC % i VED
D% -1 OF MAF
X 5944 FROM CORESTMF 2 DUCTDONE
pRL i oy s RESERVED
DC% -1 Koo G END OF MAF
X 5948 FROM DUGTSTM . € o WDNE:
D% 4 X, TO CORESTIM RT-EUS
DC % g %,y o RESERVED
D4 -1 Xy END OF MAF
X G9N4 FROM DUCTSIM, C . FRD
D% 0 X, TO DATAFROC T-EUS
D -2 FVED
DC% -1 Xo o JEND OF MAF
X 5960 FROM DUCTSIM, P FFNA
DES . X4 o o REGERVED
D w1 Koo JEND OF MAF
X 5964 FROM DUCTSIM.FLFLC
D0 i Xy o o REGERVED
DC % =1 Ko JEND OF MAF
5968 FROM DUGTSIM . F s FPREFDOME
D% -2 Koo REGER
DC -1 Koo JEND OF MAE

%

¥

3

x %

CHANNEL, TRANSFER MEMORY ALLOCATION

OR G 7536

7936 XFER TMAGE OF DATAPRDC, P AN
D 0 X CALE FLAG
DO 2E600 X LG ELL
DO 0 Mo FTLLER WORD
DC 4% 5806 % XFER MAF ADDE

7944 XEER TMAGE OF DATAFROC, P ANF
D 0 ¥4 CALEC FLAG
DO 20210 X LB B+

b3

94

FAGE 4 LIST VERSTION 042682 3 11/30/84 13302125 DEVL 0. QRJICOMEF , DATAFROC

284 Do 0 ¥, F I R OWORD
287 DCE B892 e W XFER MAF aDDR
® TOER AFER TMAGE OF CORESIM . O« JOBDONE
DOE 0 ¥, CALC FLAG
D% 0 KL BOOLEAN
DC% 0 oL FILLER WORD
(B1 “893 Ko XFER MAF ADDE:
X 7960 XFER IMaGE OF CORESIM.C.ACN
DCY% 0 W OALEC Fla
DC4 0 b S 5 R R
(108 ¢ W s FYLLER WORD
DY He04 #, CXFER Maf abDR
*x SRR KFER TMAGE OF CORESTM.C.ali
DCY 1} ¥, L OnlGC FLas
D4 0 K oo oGl BwiD
DO 0 *y FTLLER WORD
D 5910 ¥, WXFER MAF ADDR
* 7976 XFER IMAGE OF CORESTM.CWDN
(10 0 K, LOALC FLAG
DCE 0 bR = R R
DEE {1 M, FYLLER WORD
DCE R ¥ o XFER MAF alDDE
b3 7Raq XFER TMAGE OF CORESTM O RO
DCE 0 ¥, LOALC FLAG
(I 16364 X .81 Bl
D% 1] R WORD
DCE "B iR MG ADDE
* 7992 XFER THMAGE OF CORES
(BI85 0 m..!nLF Fl.a
DO 0 +1
(R1: 0 ¢ WD
DOE 528 *..XFF\ Mﬁr ADDR
* 8000 MFER S OTMAGE OF CORESTM P OFLT
DG 0 ®¥. OALC FLAG
(B10g: 13514 ¥, .51 Bl
DCE Q ¥ o ROWORD
D% GG ¥ oo XFER MAF ADDR
x G008 XFER IMAGE OF CORESTMFWDNCG
Do {1 ¥ OALE FLAG
DG] ¥, .51 B2
0 0 ¥, FTLLER WORD
DCE B34 ¥ o XFER MAF
w @0ls XFER TMAGE OF
DCE 0 ColCoFLAG
0% (] SR =10 b
DT 0 T WORD
24 SHO49) SR Ml ADDE
Xllh IMmCK OF CORESYTMF L DUCTDONE
1] Wy o0 (1'(. F...6905
0 X o LBEOOLEAN
] W, FYLLER WORD
5G4 ¥ oo XFER MaF ADDR
XFER TrManE OF DUCTSIM . O WDNE
1] ¥, L CALC FLaG
0 b
)

5546

RESTM B PREFDONE

* a024

X S052

e EB1E

95

FAGE. 7 LIST VERSTON 042682 3 11/30/784 131023185 DEVL 10, OEJCOME DATAFROC

* 8040 XFER IMaGE OF DUCTSEIM.CFRD
DCE 0 ¥, OALE FLAG
DS 16384 X .51 B+l
DO 0 ¥ JFTLLER WORD
DCE 5954 X, JKFER MAF ADDR
x £204g XFER IMAGE OF DUCTSIM. P FENA
DO 0 Mo o OO FLAG
DC% 0 * W51 Bl
DS 0 *, JFYLLER WORD
DO 59460 ¥ o XFER MAF ADDR
x 8054 XFER XMAGE OF DUCTSIM.FP.FLG
DO 0 *. L, CALLC FLAG
D% 13514 ¥ W81 Bl
DCE 0 Ko GJFTLLER WORD
D BR6H4 K, XFER MAP aDi
x 064 XFER IMAGE OF DUCTSIM . FREFDONE
D 0 M LOALC FLAG
DCS 0 *® . W BOOLEAN
D 0 o, JFILLER WORD
DO 59458 X o XFER MAF ADDR

x %

LOCAL VARTAEBLE ALLOCATION
QRGS 1oeon

FROGRAM CONSTANT ALLOQUATION

X
*”
X
.8
x
¥ ARGUMENT GROUFP ALLOCATION
x
DATH DS = XFOR OF--8YS LUSE
DN DT AXKNOKXK
DN% DATAFROC
Do 1
DO 16 XARGGROUF STZE
DS (H¥EUSY Flag
DCS 0 KEXECUTION COUNT
DCs 7 KMNUMBER OF TTEMS
DC% 1 HWORDS FER ITEM
D% 7908 Ky o AN
DL.% 7946 o o ANF
DL% TRAH Moo ACN
DL.% 7970 o eADN
D% 79136 Ko o PRE
368 DL.% 3042 X o FRD
389 D% 7978 Wy WDN
390 DH% 18 XRESERVED
a9l DH%E 1& WKL RVED
392 DATAENDS
Fe3 X
394 x
a9y X
3P4 X
397 ¥ EXECUTIVE S MAIN., FRIORITY=0
398 MAIN. EACKEXEDS MAXN, » 82
399 Gl ENTERS GETDATA .

DATAFROC EXECUTABLE SEGMENT

96

FAGE

400
401
402
403
404
40%
104
407
408
409
410
411
412
413
414
415
414
417
418
419
420
41
472
423
4324
45
426
427
478
49
430
431

.....

437
438
429
440
441
442

2 LIET VERSTION

G422
¢

¥ EXECUTIVE?D BaDADC,

BADADEC ,

g
G$H3

5%4

G495

G$6

X
*OTAGKS

GETDANTA,
Gk
546
G$9
k4
w

X TARGET

042602 3 11/730/64

RETLRNEE MATN,
FRYORITY =1
FOREEXED BADADE, »B32
TSTXVAE 79380
LDMBEL DD 7938
HLDSS L Do
LDI$EL D800
JNEQESL 545,01
ADVIGESH 1.0
EXLTS Seb
ADVIGESH 250
RETURNET BaDADC,

KN
pAEE

HMITMERE A e 00,
*ADOMESS

HKADCME GHZ

GETDATA,

D0
DCE
(108
DO
DCe

7238
7944
LY
7970
7986
DCY% 83042
DCE 7978
DOE 7
DO 1
DO t
D5 2
CaLls SAMFLE » DATA
ADVIGESR 10 DT
RETURNST GETDATA.

wXVAR
XKXUAR
(AR
xx VAR
XV
HXUAR
¥AXVAR ADD
MNLIMEE R

KTEASBK ENy
XTASH COM

LIBRARY FROCEDURES
SoMPLE
EIND

HKIKKFETMPL. ERFC 0
RIKKRTMPL WARNINGSED 0

1302

*
4

&5

)

PIENL 30, OB JCGMEP, DATAFROC

97

98

1 LIST VERSION

RTMFLS

* FROGRA
X FUN
* GENERS

Al

o« VES

o AW
NOFE
o XL P
o KL 4
o« X2 %1

XVZ G
o KNS
oAU’$C

(G

Dk

Eds

D4

(RNEH

DT EHSE G

DATAENDS

STV

NS
TED: 11/

FOUTRED Tk

DUALNELL

DALE J.

DATEFRODC -~
RTX

M3l

MR

AR
RN

EQ)
QL)
EQL)
QL)
RN
B3
ELQL)
E(nd
EQU
(AN
E
B
Eau
1(31)
EQLd
ENIDM
MR
DRI
ENDM
Ml R
De

E MM
(TS N
(R13
F DM
e ke
DL
FINDM
ML)
DL
ESHDM
R
N

M)

GET

0424682 3

ARFASY

FREF

27784

1032358

MACED FYLE

$P4u
H8347
‘Bi*‘%l

'q9({>»<
CEVDA Y H

CEPDE
CEDE IR
(R0 R
DT 3w
$1400
$LFON
$LF01

N

N G0N
D7y CONL
SNy 0
Cinld

s XM) (g)
S XM ity

117307684

123156320

DEVL

305 QEFRER , DATAFROC

2 LIST

GUINGE

SVENE

TETXVL S

TLANE

TL.ZN\@

TL.3N@

ACTIVATYS
ACT\R

AN

ACane

ACNE

M 5
MOVEA
ADDA
TRAFY
MOVERA .. L
ADDA
TRAFY
MOVE
MOV
TeT

ENDM
MR
CMP B
BEG.H
TET B
EEQ. 5
MOVEQR
ARDAE
TRAFY
LM
CMF .
NOP
BNE .5
M
BLE.S
MUOVE
MOVE L L.

MOVE . B
ENDM
MACRD
TGT
MO
ENE 5
MOVE
IFe
MOVEF
TST .8
NOP
ENE S
MOVE B
OFRLE
MOVE &
ANDT . B
MOVE L B
ORY B
TET B
NOF
ENE G
MOVE, B
ENDC
IFC

TET B
NCIF

EE 5

VERSGITON

L.

48682 3 1173064

SUEN@+2
CaOS+ il
o CHE v AL

(il edm)
5L el

RVERE-0 D)
D7)
s>
DVLNE

CONL - XU) () » D7
TLAN@R+4

CONT— o XWVEIYREY (A9
TLANR+4

F0 - 005

12 D5

%0554
CNL=L Yo D7

TLoANR

INLHBLDL00) »DE
TL2NER

Do NLH51D1L00

Nle Dy

DSy (N~ XM 2D Cad)
D7 CONT- o XVCIR2 Y ()

SNOFE Cadgd

ACTN@

N1 D0

PNE TR

DOy JFESC{A4)
s PESC(A4)

ACNE@

Fly JFESC(A4)
*3sD7

D7y AKSF(A4)
A F By D

D7« 1800 (A%)
44y DY

+ AKSBF (AYL)

AlAaN@
D7 61800 (a4

I\\f“_)l y lr‘:l

DOy FE
2 FEBE ¢

AN

L2883 %0

DEVL 20, OBJPRER DATAFROD

FAGE

115
1146
17
118
1LY

“0

100

3 .IS

ALANE

ADVITGE$H

DISPATOS

MTf2

SaiNE

DEING

DFENE

DN

DFZNE

DFINE

T VERSTON 042682 3

MOVE , &
MOVE . B
AND L E
MOVE . B
(18] 0 I
TET B
NP
ENE .S
MOMVE L B2
ENDC

E DM
M)
MOVE 2
TRAF
ERNDM
MACKRD
MOVE EN2 P NTNR

ERA .S DFLING

ne n

DG 0

LA LA (AR ONT~1) 2) vl
MOVEALL. (A0 v AL
= (AL
DE4NG
(1)
DF&N@
O) e AT

AN

el FERBF(AL)
£33y AKSC A
FEFE D7

D7 41600(A43
#4497

+ AHEBC AL

ACANE
D7+ 1800 (A9

1y DG
9

FANED o 53
OMP L
BER S
MOVE L L.
S

A D
I XUM e DG

1w D5

MEVEA (L.
ADDA . L.
TRAFY
CMF

De &
At s AN

~ZEA5Y) D7
DEYNE

Az DS

DEiv «XALHF (A4
JPESF (A4)

MOVET
TST B
NOE
EANE L 55
MOVE L
MOVE . £
ANDY, BB
MOVE . B
QR B
TET B
MO
ENE . S

MOVE, 13

DFZNE

B B R
Plo o AHSC A
HEFE D

D72 €1800 (A4
fl o7

+AFEC G

DFINEG
D7y &1LE00 (A

Lis30784

13

-
4

¢
&+

5

*.

4

4

DEVL 0 GEUPRER . DATAFROC

FAGE

172
173
174
175
174
177
178
179
180
181
182
183
164
183
184
187
1683
189
120
171
192
193
194
19%
194
197
1983
199
200
201
202
203
204
205
204
207
208
209
210
211
212
213
214
215
216
217
218
219
230

ey
P 3 SO
T
Ky e tan,

4 LIST VERSION 0424682 3 11/30/84

DEYN@

DEFaNE

VAN

D& @

D7

RETURNSE

RETURNST

EACKEXED

ENTERS

BRA.H DF4N@
MOVER.L. 0CAD) »DS
MOVE L. DSs (AZ)
MOVELE D71 (AZ)

N3y
F31 D7
DF3NR

=1 (A2 D7
EINEE. S DE4NG
MOVE.L AZ»DS
SUE # . XUM DS
TRAFY

LS. H1 D5
TrAFWY

MOVEA.L. DS+aS
ADDALL A%, AS
TRAFY

MOVEF .. 0(Aa%) oDE
MOVE L. D%y (AZ)
MOVE.E D7 +~1 A2
ENDC

ERA S DFIN
L.EA N1y AZ
CEitALL. Ay Al

i DF NG

s ad

TRAFY

BlRa 5 DEF2\@
MOVE L. a0y SAa0\e
JGR 4Cn0)
MOVES L SA0NER s A0
MOVER . (alrsal
MOVE Fle-20Aal)
HUE FLeNTNR
TRAFV

BRET .5 DN

L.Ed NLyAad

LA CNLH (AR ONZ~1) D) v AD
MOVEA L. (A0 s AL
SUES E4 o 30
Thaky

MOVE FD -2 ALY
CMPALL. AZyAl
LS [RIEWAND
ENDM

Mkl

TS

DM

MACRD

RTS

ENDM

MACRO

LEA NIL-NZ AT
EINIM

MaCRD

TEY -4

g1a0 DEVL I OBJPRER . DATAFROC

101

FAGE

239
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
2350
251

e
2592

253
254

255

256
257
258
259
260
261
264
263
264
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

285

102

5 LIST VERSION

REDQ%

EXLTH

Call.-%

JTRS

HLLD$S1

INGTSSL

JNLTSS1

ADD$SIRT

MUL$S2TR

NOT$EVR

SUEBESSG1IR

BEQ.S
JGSR
ENDM
MACRO
JMP
ENDM
MACRO
JME
ENDM
MACRO
IFNC
LEA
MOVE. L.
ENDC
IFNC
LEA
MOVE. L.
ENDC
IFNC
LEA
MOVE . L.
ENDC
IFNC
LEA
MOVE . L.
ENDC
JER
EXNDM
MACKO
T8T
IZNE
ENDM
MACRO
MOVE
ENDM
MACKO
G
BGE
IZNDM
MACRO)
CM=
B
ENDM
MACRO
ARDY
TRAFY
ENDM
MACK()
MUL.S
ASL. L.
TRAFY
ENDM
MACRO
NGT
ENDM
MACRO
SUBT

X+4
\1+4

N1

N\

II’I\'Z'
N2y AD
Aly— (A7)
||,|\3|
\3rAD
ADy~ (A7)
||,l\q.|
N4y A0

Al y-—-(A7)
||,.\5|
NSy A0
Ay~ (A7)
Nl

A4

N

\1y—(A7)

(A7)+ \2
\1

A7)+ 9\2
N\l

#NI P\

#NL Y \E
#1\3

N1

LAV ERNG

042682 3

11/306/784 12158120

DEVI 0. OBJFRER . DATAFPROC

CUPHG21

LDI$SL

LDM$EL

LDMSEY

SULBS LR

SLUSBSYL

SLane

RE &

Dac

DAl

¥

4 LIST VERSION

TRAFY

TRAPY
FNDM
MALRD
SWAF
ENDM
MACRD
MOVE
ENDM

A RO
MOVE
MM
MACKD
MOV
ENDM
MALRD
TFLE
Ay
ENDC
THELT
MOVE
AGR
ENDC
ENDM
MaCRO
TEY

EFL .S
TaT
EEQS
MU
ERALS
MOVE
ENDM
MOVEA L.
MOVEA L.
MOVEA L
MOVE. L.
RTS
MOVE & A
MOVEA L
MOVE . L.
KTE
QAL

0424682 3 11730764

12358120

N2

N2 e\

RV:IAN

NN

NE- 8

N2y NL

\NZ-@
N2y DS
DS\ 1

D7
SLaNe

N -2
SlNeg
N1 oN?
SLoiN@E+4

NEyN

(A7 2+
o Y il
(A2t el
AD e {7)

=Y EFT11}
(AT I ey
Ay (A7)

-V Y1)

(A o+ el
Ay~ (A7)

DEVL 0, OBJFREF . DATAEFROC

%

CONTROL. AND TNITIALTZATION
TNITIALS
DATALEGS

CUTIVE MaFs
D

e o o NONE REGUT

103

FAGE

343
344
345
344
347
348
349
350
351
392
353
354
395
386
357
358
359
360
361
362
363
364
365
3664
367
368
349
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
384
387
388
389
390
a9l
392
393
394
395
396
{e7
398
399

104

x

LIST VERSION

¥ EXECUTABLE

¥ %X X

%

SIMULATION TRANSFER MAFS
b 5688

5888

H89L

5899

HP04

5910

5916

G922

U928

Ho32

S5934

H940

5944

5948

ORG
DL$
DL.%
DL.%
[R

ORG

DO
DCe

DCS
DCE
DO

DCs
DC%
DCH

DC%
D%
DCE

DC%
DCS
DC%

DCe:
DCE
DO

DCe
DCS
DCS

DC%
DC%

DCs
DCs

DO
DC%

DCs
DC%

DCY
D

e

DCY
DCs

042682

3 11/730/84

1258320

SEGMENT ENTRY ADDRESHES

% 5376
GETAN.,
WRTACN .
WRTADN.
JOEDONE .

t?

-1

i o

H
'

=P

P o

s
=N

FROM DATAFROC . F . AN
X, REGSERVED
Koo JEND OF MaF

FROM DATAFROC . F o ANF
¥, o TO CORESTM RT-EBUS
K, oo RESERVED
Koo o END OF MAF

FROM CORESTIM. C. JOBEDONE
¥ o TO DATAFROC RT-EUS
X, oo RESERVED
Mo s dEND OF MAF

FROM CORESIM.C.ACN
*. o TO DATAFROC RV-EUS
X, o REGSERVED
X, o JEND OF MAF

FROM CORESIM.C.ADN
X, . T0 DATAFROC RT-BEUS
Wao oo RESERVED
Koo dEND OF MAF

FROM CORESTM. C.WDN
X, ,TO DATAFROC RT-BUS
¥, o o RESERVED
Xo o JEND OF MaAF

FROM CORESIM.C.FRC
*e W TO DATAFRROC IT-BUS
Ko o e RESERVED
Koo JEND OF MaF

FrROM CORESIM.FFFNA
¥y o s RESERVED
Mo JEND OF MAF

FROM CORESIM.FL.FLC
Ky b o RESERVED
X, JEND OF MaF

FROM CORESGTIM.F . WDNC
Koo s RESERVED
X e dEND OF MAF

FROM CORESIM.F.FREFDONE
b P N VEED
X4 o JEND OF MAF

FROM CORESTIM.F L DUCTDONE
Koo o RESERVED
Koo JEND OF MAF

FROM DUCTSETIM. CWDNE
x, . TO CORESIM RT-ELS
Koo o RESERVED
Koo JEND OF MAF

DEVL 0. DBEJFREP . DATAFROC

FAGE g LIST VERSION 0424682 3 11/730/84 12158320 DEVL S0 0BJFPRER s DATAFROC

400 x 5954 FROM DLUCTSIM. C, FRD
401, D% 0 Ko W TO DATAOFROC T-BUS
407 DO - X, o RESERVED
4073 DC% -1, ¥ o END OF Mo
409 x 5960 FROM DUCTSIM, P FFNA
40 DCE - ¥, s RESERVED
404 DC S -1, Koo END OF M
407 X% E9L4 FROM UH(TnIM oy LG
408 CE ~2 : :
409 DC% 4,
410 % 5948
411, DCs 4 :
412 0% -, Koo JEND OF MAF
413 X
4149
415 CHANNEL TRANSFER MEMORY ALLOCATION
414 ORGS 79364
417 7934 XFER IMAGE OF DETARRDE, P, AN
418 D 0 W OALE FLAG
419 DY 254600 oL B Fedd
430 (¥08 3 0 ®o W FTLLER WORD
421, DO% SEOE *, W XFER MO ADDR
472 K 7944 XFER THMAGE OF DATAFROC, P, ARNE
423 DCE 0 K, L CALE FLAG
424 DO 20210 SN 5 R =R R R
R Faw DC% 0 ¥ W FTLLER WORD
R D% 509 Ko OFER MAP ADDR
7K T9%R XFER TMAGE OF CORESTMC . JOBDOME
478 [0 % 0 K, L 0ALE FLAG
429 DC% 0 *® L EOOLEAN
430 DE 0 #y FILLER WORD
431, DCE HH9E8 *, W XFER MO aDDR
432 % 7960 KFER TMAGE OF DORESTM D ACN
433 DCE 0 X, CALE FLAG
434 D% 0 O - S I =R R
435 DCE 0 oG FILLER WORD
4364 DO% 604 W XFER Mol aDDR
437 K V68 XFER TMAGE OF CORESIM.C.ADN
433 DCs 0 W OOLEC FLAG
439 DCE 0 0
444 DO% 0 LER WORD
441, D% 5910 ER MAF ADDR
442 X 7974 E OF CORESTM.C.HDN
443 DEE 0
444 D% 0
445 DCE 0 LER WORD
444 Dis 5916 R MAF SR
447 X 7984 XFER IMAGE OF CORESYM.CPRC
448 D24 0 o CALEC FLAG
49 DC$ 16364 N R
4550 DiE 0 Mo oFILLER WORD
451 DCE BOPR #*, o XFER MaF &DDR
452 X 7992 XFER TMAGE OF CORESITH
R D% 0 Ko CALE FLAG
D% 0 . G -
(RIS 0 X < NUN)
D% SO %o XFER MAF aDDIE

¥ X

*

JFLFFNG

105

FAGE

457
458
459
4460
461
4462
463
464
465
466
467
4683
469
470
471
472
473
474
475
474
477
478
479
480
481
1482
483
44
485
4846
487
484
89
120
121
192
193
194
495
494
Q7
498
499
500
5000
502
503
G504
50%
504
507
508
509
510
bh N !
H12

513

106

9 LIST VERSTON

X soop

X 6008

X 8016

* 8024

% 8032

P 8040

p 8049

x 8056

x 8064

x
x

X LOCAL VARIAELE

AN

AN

x

x

X PROGRAM
K1

DO
Do%
DCE
DO

DO
DCE
DCE
DC4

DCY
DC%
DCs
D%

DO
DO
e
DO

DCe
DO
DO
DC%

DO
DO
DC%
DCs

DCe
DO
DO
D%

DO
DO
DC%

DCe

DCE
DO
DO
D

QRGE
DCS
D%
DCH
DUH

CONSTANT
DCY

042682 3 11/30/84 12:58120 DEVL 10, OBJFRERF..DATAFROC

XFER TMAGE OF CORESTIM.F.FLC
0 ¥, L CALC FlLAG
13514 Mo B B
0 X, GdFILLER WORD
HY32 Ko o XFER MAF ADDIR
XFER TMAGE OF CORESTM.FLWDNC
¢ ¥, OALEC FLAG
0 K .51 B2
0 Ko o FILLER WORD
5936 Ky W XFER MAF aDDR
XFER IMAGE OF CORESIM.F FPREPDONE
0 ¥, CALC FLAG
0 X ., BDOLEAMN
{ ¥ W FILLER WORD
5940 Ko o XFER MAF ADDIR
XFER IMAGE OF CORESIM.F . DUCTDONE
e oCALC FLAG
*x . BOOLEAN
¥ FYLLER WORD
5944 K XFER MAF ADDR
XFER ITMAGE OF DUCTSIM.CWDNE
¢ ¥ CALC FLAG
0 b SO 0 R = B
Q ®o GFILLER WORD
5948 Ko XFER MAF ADDR
XFER TMAGE OF DUCTSIM.C.FRD
0 ¥aLCALC FLAG
16384 X .81 Bl
0 ¥ W FILLER WORD
5954 X, XFER MAF ADDR
XFER TMAGE OF DUCTSIM.FFFN&
0 X, L CALC FLAG
0 Koo, 091 E"*‘l
0 Xo JFTLLER WORD
Hea60 ¥, W XFER MAF ADDR
XFER IMAGE OF DUCTSIM.F.FLO
{1 X, LOALC FLAG
13516 X .81 B+l
0 X, FILLER WORD
59464 ¥4 o XFER MAF ADDR
XFER IMAGE OF DUCTSIMFPREFDONE
0 ¥ CALE FLAG
0 X . JEOOLEAN
0 X, FILLER WORD
HP468 X, XFER MAF ADDR

oo

ALLOCATION

10000

0 XAN H-LTCH
254600 X . .81 B+l
0 ®XANF H-1L.TCH
20210 X . .81 Bl

ALLOCATION
1 x T3

FAGE 10 LIST VERSION 0424682 3 11/30/89 12 LERIZ0 DEVL 20, OBJFRER , DATAFROD

Sl %

515 %

314 x DISPFATCH TASHLIST ALLOCAT 0N
517 Tt Di.% WRTACN,

518 L% WRTADN,

519 x
5200 x
Hal ¥ ARGUMENT GROUF ALLOCATION
L.l/’.(-)) 4

523 ACNG DS ot *¥OR OF~8YS USE

e DNG ATNGRAKK
DN DATAFROC
DY 2
DC% 1 MARGGROU ST2E
DCE 0 KEURY FLaG
DCE 0 LUTTON COUNT
D% 1 EROOF TTEMS
DC% 'l KWORDS FER TTEM
D% FGEHT . cACH
DS% J. KEESERVED

b 4

ADNG DS b ®FOR OF-8Y5 USE
i ALK IO
DiN¢ DATAFROC
O % 4
DO 1 m’\hf*(O STZE
DCE A
f)l 4

0 SR A

0 REXECUTTION COUMT
1 HNLUMBER OF TTEMS
1 HWORDS FER XTEM
26 o

1

®

ADCVAR DS 5 *¥FOFR QF-SY5 USE
NG ADCVARY XK
DiNg DaTarFRDC
DI 3
DOt 3 RARGGRQLI STZE
DL 0 W YoOFL.AG
Blng 0 o CUTTON COUNY

2 1 KNUMBER OF XTTEMS
DG 1 HHORDS PER TTEM
D% 19002 W, o AN
DS54 A s e
DS 3

&

ADCCHN DSY: 5
DN AN
[aN%: DETAFROC
T 2
D 4
DCE 0
DCE 0
0% 1
DC%: 1 LR
D% 10003 Ky o K1
DS &HE KRESERVED

107

FAGE 11 LIST VERSION 042482 3 11/30/,84 121583 DEVL 30 OB JPRER . DATAFROD

571 DS% 3% KEESERVED
iy DATAEND$

*
%
57 X
¥
*
G

DATAFROC EXECUTARLE SEGMENT

EXECUTIVE S GETAN. FRIORLTY =0
SETAN BACHEXEDS GETAN. » 74
Gl CAll.4 FEAD » ADCVAR »y ADCCHN
R M LDOMBEL DO yAN e+
ADDSSIRT DO DO 12800 G 1L
SLAMBED AN DO *E+11
TUﬂwu FE3ED0 XL EUSKFER
S63 III DS Do
LDI$HGL D1,800 KMINARE Ay B+ 100
JNLTEEL HEALD
H44 LDIHEA D2 800 KMINARE Ay 11
GlLAMBG AN D2 xE+11
T ¢330 D2 AHLEUSXFER

Gt & 3 512401 RKEADADT

IXII% H49

Ghé FL.DHBS, Do
LIS UJ»?U(UU AKMAXARE Ny B+ 11
JNGTERS i

8467 LDYSE
GLAMBG L
STUHGL

ﬁN U%
TE3By DA
G ALTIVATS 5124

D0 AN *t#ll
L DO ELTT0 vl"ﬂ ML E2ZMA p B L
DO-DO -

DO«1L2
T D0y1ELDO *bETIvFGII
AN ¢ 1) REHLL

. 744D ¥LELSXFER
ENTERS lOlwI)lli'l e

DYXSEATCE [
RETUIRNEE

GG LDMBEL

X TAGK! WRTACN.

DC b ®XUAR ADDIRESS

D4 1 WNUMEE R (F

D4 1 XTAGK ENGE
¥ o KTAGK COMI :

2 MENTRY OVERHEAD

CALL% DA o AENG

FETURNET WRTAGN,

WIRTACN .

O TAGKD WRTADN
DO 7970 XUk ADDRESS
) ‘(lelfﬁt : (JI

WET AN . DS e X|Nlh\ OUVERMEAD
Gb 1 Chli.e) y
Gl é FETURNET WRTADN,

HET N

108

FAGE 12 LIGT VERSION 042482 3 11730789 129568320 DEVL S0, OBPRER , DATAFROC

A28 X TABK: JOEDONE,

&HED DO 7954 KAk abDDRESS
H30 DCE 1 OF XUalks
&3 DS 1 NABLE

HEP DO o HTASK
& ADEDONE. DS% 2 MENTRY QUER
AH34 TESTY THTXW. & 795490 HADEDONE
HEY LDMBENY DO 7954

4H3A NOTHENR DOsDO

6B JTRS SH19s00

4H38 8418 FREDDE TESBT

6H3Y EXTTS G20

540 SH19 ADVISESH 3yF KOPMES S

H4)L BP0 RETURNST JOBDONE .

H42 X

H43 X

H44 o TARGET
HAS

LERARY FROCEDURES

&HAH DACT
&H47 DAz
543 END
4H49

S50

KA TMFL ERRORES 0
AHKKFTMPL, WARNINGS S O

109

References

1. Blech, Richard A.; and Arpasi, Dale J.: Hardware for a Real-Time Propulsion System Simulator—Users Manual. NASA TP-2426,
Multiprocessor Simulator. NASA TM-83805, 1984. 1984.

2. Cole, Gary L.: Operating System for a Real-Time Multiprocessor 4, Arpasi, Dale J.: RTMPL—A Structured Programming and
Propuilsion System Simulator. NASA TM-83605, 1984. Documentation Utility for Real-Time Multiprocessor Simulations.

3. Cole, Gary L.: Operating System for a Real-Time Multiprocessor NASA TM-83606, 1984.

110

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA TP-2422

4. Title and Subtitle 5. Report Date
X i . June 1985
Real-Time Multiprocessor Programming Language _
(RTMPL) - Users Manual 6. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.
Dale J. Arpasi E-1999

10. Work Unit No.

9. Performing Organization Name and Address

. . . . 11. Contract or Grant No.
National Aeronautics and Space Administration

Lewis Research Center
Cleveland N Ohio 44135 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Techni cal Paper‘

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546

15. Supplementary Notes

16. Abstract

A real-time multiprocessor programming language (RTMPL) has been developed to
provide for high-order programming of real-time simulations on systems of dis-
tributed computers. RTMPL is a structured, engineering-oriented language. The
RTMPL utility supports a variety of multiprocessor configurations and types by
generating assembly language programs according to user-specified targeting
information. Many programming functions are assumed by the utility (e.g., data
transfer and scaling) to reduce the programming chore. This manual describes
RTMPL from a user's viewpoint. Source generation, applications, utility opera-
tion, and utility output are detailed. An example simulation is generated to
illustrate many RTMPL features.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Multiprocessor; Simulation Unclassified - Unlimited
STAR Category 61

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price

Unclassified Unclassified 112 AO6

For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA-Langley, 1985

P rd

: ;-Né’t'(ohél Aeronautics a"nd:_" - THIRD-CLASS BULK RATE . :{omgam;war:&:m Pt:;dm;
,sg‘age\%dminist;ation el R T Space Administration

. N Lo L X ,\' o : - - | . B : ‘. : RO NA$A451

' Washington,D.C. - - e T Tt s

b COfficial Business R L . . oo e s
L= Penalty for Private Use, $300 s T T e TR oo
ST :

~ L . : "
.. % Ve 3 : i) : R
B e R)
. N . N . R -
: : . - _ o
T N P .) . -
; - . . A
.)))
N A, - -
; = N
x
) .
- -
,
.)
’ - K
‘ a -
N \ g
- . . ‘\ . LN
: . ¢ vy . N~
° L . . s
< i N R . -
B X SN h - ¢
[N RN = ”
. » . P RACIS
‘, p -\ N FENECIPOREEEN
.) e .
L0 « . g

S s . pOSTMASTER: " If Undsliverabls (Section 158

‘ - ‘ A b “ ‘Pq;\tal'ﬁ*nu’gl)pthbtvnctun“,
t . N X - . . (NN o -" : 1'\
A ' N . . . W LN N
N : .

